論文の概要: A PM2.5 concentration prediction framework with vehicle tracking system:
From cause to effect
- arxiv url: http://arxiv.org/abs/2212.01761v1
- Date: Sun, 4 Dec 2022 08:09:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:36:40.308553
- Title: A PM2.5 concentration prediction framework with vehicle tracking system:
From cause to effect
- Title(参考訳): 車両追跡システムを用いたPM2.5濃度予測フレームワーク:原因から効果へ
- Authors: Chuong D. Le, Hoang V. Pham, Duy A. Pham, An D. Le, Hien B. Vo
- Abstract要約: ベトナムでは、ハノイやホーチミンといった大都市では大気汚染が問題となっている。
本論文は, PM2.5汚染物質排出量を推定する手法の開発に重点を置いている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution is an emerging problem that needs to be solved especially in
developed and developing countries. In Vietnam, air pollution is also a
concerning issue in big cities such as Hanoi and Ho Chi Minh cities where air
pollution comes mostly from vehicles such as cars and motorbikes. In order to
tackle the problem, the paper focuses on developing a solution that can
estimate the emitted PM2.5 pollutants by counting the number of vehicles in the
traffic. We first investigated among the recent object detection models and
developed our own traffic surveillance system. The observed traffic density
showed a similar trend to the measured PM2.5 with a certain lagging in time,
suggesting a relation between traffic density and PM2.5. We further express
this relationship with a mathematical model which can estimate the PM2.5 value
based on the observed traffic density. The estimated result showed a great
correlation with the measured PM2.5 plots in the urban area context.
- Abstract(参考訳): 大気汚染は特に先進国や発展途上国で解決する必要がある新興問題である。
ベトナムでは、大気汚染はハノイやホーチミンのような大都市でも問題となっている。
そこで本研究では,道路交通の車両数を計算してpm2.5汚染物質を推定する手法の開発に注目する。
まず,最近の物体検出モデルを調査し,交通監視システムを開発した。
観測された交通密度は, PM2.5とほぼ同様の傾向を示し, 交通密度とPM2.5の関係が示唆された。
さらに、観測された交通密度に基づいてPM2.5値を推定できる数学的モデルとの関係を述べる。
その結果, 都市域におけるPM2.5プロットの測定値と大きな相関が認められた。
関連論文リスト
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Automated Quantification of Traffic Particulate Emissions via an Image
Analysis Pipeline [0.0]
交通画像を利用して車両数を求める統合機械学習パイプラインの提案と実装を行う。
シンガポールのロケーションで取得した交通画像のオープンソースデータセット上で,このパイプラインの有用性と精度を検証する。
路側粒子放出は、得られた車両数と0.93の相関係数とをよく相関させ、この方法が粒子放出の迅速かつ効果的な相関として有効であることを示す。
論文 参考訳(メタデータ) (2022-11-24T07:48:29Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
都市部における空気質の向上は、公共団体の主な関心事の一つである。
この懸念は、大気の質と公衆衛生の間の証拠から生じる。
規制された駐車場サービスにおける動的価格の提案について述べる。
論文 参考訳(メタデータ) (2022-01-11T20:31:35Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Deep-AIR: A Hybrid CNN-LSTM Framework for Air Quality Modeling in
Metropolitan Cities [28.233460564726034]
Deep-AIRは、畳み込みニューラルネットワークと長期記憶ネットワークを組み合わせた、新しいハイブリッドディープラーニングフレームワークである。
提案手法は,大気汚染と都市動態の特徴の相互相互作用の学習を強化するために,1x1畳み込み層を生成する。
香港では, 67.6%, 77.2%, 66.1%の精度, 1時間, 24時間大気汚染予測, 65.0%, 75.3%, 63.5%の精度を達成した。
論文 参考訳(メタデータ) (2021-03-25T13:47:56Z) - Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from
Multiple Data Sources [17.330234783027855]
毎日10kmの空間解像度のPM2.5データは、私たちの最初のほぼリアルタイム製品です。
2000年以降のPM2.5データの長期記録は、政策評価や健康影響研究もサポートする。
論文 参考訳(メタデータ) (2021-03-11T08:17:36Z) - Transportation Density Reduction Caused by City Lockdowns Across the
World during the COVID-19 Epidemic: From the View of High-resolution Remote
Sensing Imagery [48.52477000522933]
新型コロナウイルス(COVID-19)の流行は、2020年前半に悪化し始めた。
厳しい封鎖政策が世界中の多くの都市で実行され、人間の感染を制御し、拡散を緩和した。
中心市街地6都市におけるロックダウン前後の交通密度の低減について定量的に検討した。
論文 参考訳(メタデータ) (2021-03-02T13:45:16Z) - HVAQ: A High-Resolution Vision-Based Air Quality Dataset [3.9523800511973017]
PM2.5, PM10, 温度, 湿度データからなる高時間・空間分解能空気質データセットを提案する。
我々は,センサの密度と画像によって予測精度が向上することを示すために,いくつかの視覚に基づくPM濃度予測アルゴリズムをデータセット上で評価した。
論文 参考訳(メタデータ) (2021-02-18T13:42:34Z) - Interpretable and Transferable Models to Understand the Impact of
Lockdown Measures on Local Air Quality [5.273501657421094]
新型コロナウイルス(COVID-19)関連のロックダウン対策は、経済活動や交通の変化が環境空気の質に与える影響を理解するユニークな機会を提供する。
地上の大気汚染モニタリングステーションからの測定値を用いて,ロックダウン期間における汚染の低減を推定する。
我々は,スイスと中国における大気汚染測定所のデータについて,現状の成果が得られたことを示す。
論文 参考訳(メタデータ) (2020-11-19T23:09:30Z) - Averaging Atmospheric Gas Concentration Data using Wasserstein
Barycenters [68.978070616775]
ハイパースペクトル衛星画像は、世界中の温室効果ガス濃度を毎日報告している。
気象データと組み合わさったワッサーシュタイン・バリセンタを用いて, ガス濃度データセットの平均化と, 質量集中性の向上を提案する。
論文 参考訳(メタデータ) (2020-10-06T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。