Acceleration AI Ethics, the Debate between Innovation and Safety, and
Stability AI's Diffusion versus OpenAI's Dall-E
- URL: http://arxiv.org/abs/2212.01834v2
- Date: Sun, 2 Apr 2023 16:47:50 GMT
- Title: Acceleration AI Ethics, the Debate between Innovation and Safety, and
Stability AI's Diffusion versus OpenAI's Dall-E
- Authors: James Brusseau
- Abstract summary: This presentation responds by reconfiguring ethics as an innovation accelerator.
The work of ethics is embedded in AI development and application, instead of functioning from outside.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One objection to conventional AI ethics is that it slows innovation. This
presentation responds by reconfiguring ethics as an innovation accelerator. The
critical elements develop from a contrast between Stability AI's Diffusion and
OpenAI's Dall-E. By analyzing the divergent values underlying their opposed
strategies for development and deployment, five conceptions are identified as
common to acceleration ethics. Uncertainty is understood as positive and
encouraging, rather than discouraging. Innovation is conceived as intrinsically
valuable, instead of worthwhile only as mediated by social effects. AI problems
are solved by more AI, not less. Permissions and restrictions governing AI
emerge from a decentralized process, instead of a unified authority. The work
of ethics is embedded in AI development and application, instead of functioning
from outside. Together, these attitudes and practices remake ethics as
provoking rather than restraining artificial intelligence.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Beyond Bias and Compliance: Towards Individual Agency and Plurality of
Ethics in AI [0.0]
We argue that the way data is labeled plays an essential role in the way AI behaves.
We propose an alternative path that allows for the plurality of values and the freedom of individual expression.
arXiv Detail & Related papers (2023-02-23T16:33:40Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
There are many emerging AI risks for humanity, such as autonomous weapons, automation-spurred job loss, socio-economic inequality, bias caused by data and algorithms, privacy violations and deepfakes.
Social diversity, equity and inclusion are considered key success factors of AI to mitigate risks, create values and drive social justice.
In our journey towards an AI-enabled sustainable future, we need to address AI ethics and governance as a priority.
arXiv Detail & Related papers (2022-09-28T22:23:10Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - From the Ground Truth Up: Doing AI Ethics from Practice to Principles [0.0]
Recent AI ethics has focused on applying abstract principles downward to practice.
This paper moves in the other direction.
Ethical insights are generated from the lived experiences of AI-designers working on tangible human problems.
arXiv Detail & Related papers (2022-01-05T15:33:33Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
This study aims to extend ECCOLA with a deployment model to drive the adoption of ECCOLA.
The model includes simple metrics to facilitate the communication of ethical gaps or outcomes of ethical AI development.
arXiv Detail & Related papers (2021-10-12T12:22:34Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.