論文の概要: FedCC: Robust Federated Learning against Model Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2212.01976v1
- Date: Mon, 5 Dec 2022 01:52:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:17:29.991001
- Title: FedCC: Robust Federated Learning against Model Poisoning Attacks
- Title(参考訳): fedcc:モデル中毒攻撃に対する堅牢な連合学習
- Authors: Hyejun Jeong, Hamin Son, Seohu Lee, Jayun Hyun, Tai-Myoung Chung
- Abstract要約: フェデレートラーニング(Federated Learning)は、プライバシー侵害に対する懸念の高まりに対処している。
ローカルデータセットに対するサーバーの盲目は、毒殺攻撃をモデル化する脆弱性を導入している。
FedCCは、Centered Kernel Alignment of Penultimate Layers Representationsを比較することで、堅牢なアグリゲーションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning has emerged to cope with raising concerns about privacy
breaches in using Machine or Deep Learning models. This new paradigm allows the
leverage of deep learning models in a distributed manner, enhancing privacy
preservation. However, the server's blindness to local datasets introduces its
vulnerability to model poisoning attacks and data heterogeneity, tampering with
the global model performance. Numerous works have proposed robust aggregation
algorithms and defensive mechanisms, but the approaches are orthogonal to
individual attacks or issues. FedCC, the proposed method, provides robust
aggregation by comparing the Centered Kernel Alignment of Penultimate Layers
Representations. The experiment results on FedCC demonstrate that it mitigates
untargeted and targeted model poisoning or backdoor attacks while also being
effective in non-Independently and Identically Distributed data environments.
By applying FedCC against untargeted attacks, global model accuracy is
recovered the most. Against targeted backdoor attacks, FedCC nullified attack
confidence while preserving the test accuracy. Most of the experiment results
outstand the baseline methods.
- Abstract(参考訳): フェデレーション学習は、機械学習やディープラーニングモデルの使用において、プライバシ侵害に関する懸念の高まりに対処するために出現した。
この新たなパラダイムは、ディープラーニングモデルを分散的に活用し、プライバシ保護を強化する。
しかし、サーバがローカルデータセットに盲目であることは、その脆弱性によって毒殺攻撃やデータ不均一性をモデル化し、グローバルモデルのパフォーマンスを損なう。
多くの研究が堅牢な集約アルゴリズムと防御機構を提案しているが、アプローチは個々の攻撃や問題に直交している。
提案手法であるFedCCは,Pultimate Layers RepresentationsのCentered Kernel Alignmentを比較することで,ロバストなアグリゲーションを提供する。
FedCCの実験結果は、標的にされていないモデル中毒やバックドア攻撃を軽減し、非独立的にかつ特定に分散したデータ環境でも有効であることを実証している。
標的外攻撃に対するFedCCの適用により,グローバルモデル精度が最も向上した。
ターゲットのバックドア攻撃に対して、fedccはテスト精度を維持しながら攻撃の信頼性を無効にした。
実験のほとんどがベースラインメソッドに逆らっている。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning [0.0]
Federated Learning(FL)は、集中型機械学習(ML)デプロイメントに関連する典型的なプライバシ問題に対する、有望なアプローチである。
そのよく知られた利点にもかかわらず、FLはビザンツの行動や毒殺攻撃のようなセキュリティ攻撃に弱い。
提案手法は各種モデル毒殺攻撃に対して試験され,最先端の凝集法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-15T16:42:04Z) - Protecting Model Adaptation from Trojans in the Unlabeled Data [120.42853706967188]
本稿では,よく設計された毒物標的データによるモデル適応に対するトロイの木馬攻撃の可能性について検討する。
本稿では,既存の適応アルゴリズムとシームレスに統合可能なDiffAdaptというプラグイン・アンド・プレイ手法を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Sentinel: An Aggregation Function to Secure Decentralized Federated Learning [9.046402244232343]
Decentralized Federated Learning (DFL)は、協調モデルをトレーニングするための革新的なパラダイムとして登場し、単一障害点に対処する。
既存の防御機構は集中型FLのために設計されており、DFLの特異性を十分に活用していない。
この研究は、DFLの毒殺攻撃に対抗する防衛戦略であるSentinelを紹介した。
論文 参考訳(メタデータ) (2023-10-12T07:45:18Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。