論文の概要: Wish I Can Feel What You Feel: A Neural Approach for Empathetic Response
Generation
- arxiv url: http://arxiv.org/abs/2212.02000v1
- Date: Mon, 5 Dec 2022 03:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:01:23.390518
- Title: Wish I Can Feel What You Feel: A Neural Approach for Empathetic Response
Generation
- Title(参考訳): あなたが感じているものを感じることを願う:共感的反応生成のためのニューラルアプローチ
- Authors: Yangbin Chen and Chunfeng Liang
- Abstract要約: 本稿では,感情の原因,知識グラフ,共感応答生成のためのコミュニケーション機構という,3つの要素を統合した新しいアプローチを提案する。
実験結果から,鍵成分を組み込むことにより,より情報的,共感的な反応が生じることが示された。
- 参考スコア(独自算出の注目度): 2.5255184843886225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Expressing empathy is important in everyday conversations, and exploring how
empathy arises is crucial in automatic response generation. Most previous
approaches consider only a single factor that affects empathy. However, in
practice, empathy generation and expression is a very complex and dynamic
psychological process. A listener needs to find out events which cause a
speaker's emotions (emotion cause extraction), project the events into some
experience (knowledge extension), and express empathy in the most appropriate
way (communication mechanism). To this end, we propose a novel approach, which
integrates the three components - emotion cause, knowledge graph, and
communication mechanism for empathetic response generation. Experimental
results on the benchmark dataset demonstrate the effectiveness of our method
and show that incorporating the key components generates more informative and
empathetic responses.
- Abstract(参考訳): 共感の表現は日常会話において重要であり、共感の出現が自動応答生成において重要である。
以前のアプローチでは、共感に影響を与える唯一の要因しか考慮していなかった。
しかし実際には、共感の生成と表現は非常に複雑でダイナミックな心理的プロセスである。
聞き手は、話者の感情を引き起こすイベント(感情の抽出)を見つけ、そのイベントを何らかの体験(知識拡張)に投影し、最も適切な方法で共感を表現する(コミュニケーションメカニズム)必要がある。
そこで本研究では,感情の原因,知識グラフ,共感応答生成のためのコミュニケーション機構という3つの要素を統合した新しいアプローチを提案する。
ベンチマークデータセットにおける実験結果は,本手法の有効性を示し,キーコンポーネントを組み込むことにより,より有益で共感的な応答が得られることを示す。
関連論文リスト
- APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
共感反応生成は、他人の感情を理解するように設計されている。
検索強化と感情支援戦略統合を組み合わせたフレームワークを開発する。
我々の枠組みは認知的・情緒的共感の両面からLLMの共感能力を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T02:23:37Z) - Empathetic Response Generation via Emotion Cause Transition Graph [29.418144401849194]
共感的対話は、感情的要因(例えば、感情の状態)と認知的要因(例えば、感情の原因)の両方の知覚を必要とする人間のような行動である。
共感対話における2つのターン間の感情原因の自然な遷移を明示的にモデル化する感情原因遷移グラフを提案する。
このグラフでは、次のターンで生じる感情の概念語を、特殊に設計された概念認識デコーダによって予測し、使用し、共感的な応答を生成する。
論文 参考訳(メタデータ) (2023-02-23T05:51:17Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
情緒的対話生成のためのシリアル・アンド・感情知識相互作用(SEEK)法を提案する。
我々は,会話中の感情のダイナミックス(感情の流れ)に敏感な微粒なエンコーディング戦略を用いて,応答の感情依存特性を予測するとともに,知識と感情の相互作用をモデル化し,より敏感な応答を生成する新しい枠組みを設計する。
論文 参考訳(メタデータ) (2022-10-21T03:51:18Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - CEM: Commonsense-aware Empathetic Response Generation [31.956147246779423]
本稿では,ユーザ状況に関する情報を引き出すために,コモンセンスを利用した共感応答生成手法を提案する。
我々は,共感的応答生成のためのベンチマークデータセットである共感的ダイアログに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-09-13T06:55:14Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
共感応答生成への現在のアプローチは、入力テキストで表現された感情の集合を平らな構造として見る。
共感反応は, 肯定的, 否定的, 内容に応じて, ユーザの感情を様々な程度に模倣することが多い。
論文 参考訳(メタデータ) (2020-10-04T00:35:47Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。