論文の概要: CEM: Commonsense-aware Empathetic Response Generation
- arxiv url: http://arxiv.org/abs/2109.05739v1
- Date: Mon, 13 Sep 2021 06:55:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-15 09:04:11.515737
- Title: CEM: Commonsense-aware Empathetic Response Generation
- Title(参考訳): CEM:Commonsense-Aware Empathetic Response Generation
- Authors: Sahand Sabour, Chujie Zheng, Minlie Huang
- Abstract要約: 本稿では,ユーザ状況に関する情報を引き出すために,コモンセンスを利用した共感応答生成手法を提案する。
我々は,共感的応答生成のためのベンチマークデータセットである共感的ダイアログに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 31.956147246779423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key trait of daily conversations between individuals is the ability to
express empathy towards others, and exploring ways to implement empathy is a
crucial step towards human-like dialogue systems. Previous approaches on this
topic mainly focus on detecting and utilizing the user's emotion for generating
empathetic responses. However, since empathy includes both aspects of affection
and cognition, we argue that in addition to identifying the user's emotion,
cognitive understanding of the user's situation should also be considered. To
this end, we propose a novel approach for empathetic response generation, which
leverages commonsense to draw more information about the user's situation and
uses this additional information to further enhance the empathy expression in
generated responses. We evaluate our approach on EmpatheticDialogues, which is
a widely-used benchmark dataset for empathetic response generation. Empirical
results demonstrate that our approach outperforms the baseline models in both
automatic and human evaluations and can generate more informative and
empathetic responses.
- Abstract(参考訳): 個人間の日々の会話の重要な特徴は、他者に対する共感を表現する能力であり、共感を実現する方法を探ることは、人間のような対話システムへの重要なステップである。
このトピックに対する以前のアプローチは主に、共感的な反応を生成するためにユーザの感情を検出し、活用することに焦点を当てている。
しかし,共感には感情と認知の両方の側面が含まれているため,ユーザの感情の識別に加えて,ユーザの状況に対する認知的理解も考慮すべきである。
そこで本研究では,ユーザ状況に関するより多くの情報を引き出すためにコモンセンスを利用する共感応答生成のための新しいアプローチを提案し,この追加情報を用いて,生成した応答における共感表現をさらに強化する。
我々は,共感的応答生成のためのベンチマークデータセットである共感的ダイアログに対するアプローチを評価した。
実験の結果,本手法は,自動評価と人的評価の両方においてベースラインモデルよりも優れており,より情報的,共感的な応答を生成できることがわかった。
関連論文リスト
- APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
共感反応生成は、他人の感情を理解するように設計されている。
検索強化と感情支援戦略統合を組み合わせたフレームワークを開発する。
我々の枠組みは認知的・情緒的共感の両面からLLMの共感能力を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T02:23:37Z) - Improving Empathetic Dialogue Generation by Dynamically Infusing
Commonsense Knowledge [39.536604198392375]
共感的な会話では、個人は他人に対する共感を表現する。
これまでの研究は主に、話者の感情を利用して共感的な反応を生み出すことに焦点を当ててきた。
本稿では,コモンセンス知識選択のための適応モジュールを組み込んだ共感応答生成手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:25:12Z) - Use of a Taxonomy of Empathetic Response Intents to Control and
Interpret Empathy in Neural Chatbots [4.264192013842096]
オープンドメインの会話エージェントの領域における近年のトレンドは、感情的なプロンプトに共感的に会話できるようにすることである。
現在のアプローチでは、エンド・ツー・エンドのアプローチに従うか、同様の感情ラベルに応答を条件づけて共感的な反応を生成する。
我々は,次の応答の感情/意図を予測し,これらの予測された感情/意図に基づいて応答を生成するためのルールベースおよびニューラルアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-17T10:03:03Z) - Wish I Can Feel What You Feel: A Neural Approach for Empathetic Response
Generation [2.5255184843886225]
本稿では,感情の原因,知識グラフ,共感応答生成のためのコミュニケーション機構という,3つの要素を統合した新しいアプローチを提案する。
実験結果から,鍵成分を組み込むことにより,より情報的,共感的な反応が生じることが示された。
論文 参考訳(メタデータ) (2022-12-05T03:20:37Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - Empathetic Response Generation with State Management [32.421924357260075]
共感的反応生成の目標は、会話における感情を知覚し表現する対話システムの能力を高めることである。
感情や意図を含む複数の状態情報を同時に考察できる新しい共感応答生成モデルを提案する。
実験の結果、異なる情報を動的に管理することは、モデルがより共感的な反応を生成するのに役立つことが示された。
論文 参考訳(メタデータ) (2022-05-07T16:17:28Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
共感的会話エージェントは、議論されていることを理解しているだけでなく、会話相手の暗黙の感情も認識すべきである。
変圧器事前学習言語モデル(T5)に基づく手法を提案する。
本研究では,自動計測と人的評価の両方を用いて,情緒的ダイアログデータセットを用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-30T19:04:48Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
共感応答生成への現在のアプローチは、入力テキストで表現された感情の集合を平らな構造として見る。
共感反応は, 肯定的, 否定的, 内容に応じて, ユーザの感情を様々な程度に模倣することが多い。
論文 参考訳(メタデータ) (2020-10-04T00:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。