論文の概要: GNN-SL: Sequence Labeling Based on Nearest Examples via GNN
- arxiv url: http://arxiv.org/abs/2212.02017v1
- Date: Mon, 5 Dec 2022 04:22:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 16:39:16.097807
- Title: GNN-SL: Sequence Labeling Based on Nearest Examples via GNN
- Title(参考訳): GNN-SL: GNNによる最も近い事例に基づくシーケンスラベリング
- Authors: Shuhe Wang, Yuxian Meng, Rongbin Ouyang, Jiwei Li, Tianwei Zhang,
Lingjuan Lyu, Guoyin Wang
- Abstract要約: グラフニューラルネットワークシーケンスラベリング(GNN-SL)を導入する。
GNN-SLは、トレーニングセット全体から取得した類似のタグ付け例でバニラシーケンスラベリングモデル出力を増強する。
我々は3つの典型的なシーケンスラベリングタスクについて様々な実験を行う。
GNN-SLはPKUの96.9(+0.2)、CITYUの98.3(+0.4)、MSRの98.5(+0.2)、CWSタスクのASの96.9(+0.2)を達成している。
- 参考スコア(独自算出の注目度): 50.55076156520809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To better handle long-tail cases in the sequence labeling (SL) task, in this
work, we introduce graph neural networks sequence labeling (GNN-SL), which
augments the vanilla SL model output with similar tagging examples retrieved
from the whole training set. Since not all the retrieved tagging examples
benefit the model prediction, we construct a heterogeneous graph, and leverage
graph neural networks (GNNs) to transfer information between the retrieved
tagging examples and the input word sequence. The augmented node which
aggregates information from neighbors is used to do prediction. This strategy
enables the model to directly acquire similar tagging examples and improves the
general quality of predictions. We conduct a variety of experiments on three
typical sequence labeling tasks: Named Entity Recognition (NER), Part of Speech
Tagging (POS), and Chinese Word Segmentation (CWS) to show the significant
performance of our GNN-SL. Notably, GNN-SL achieves SOTA results of 96.9 (+0.2)
on PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2) on AS for the
CWS task, and results comparable to SOTA performances on NER datasets, and POS
datasets.
- Abstract(参考訳): 本研究では、シーケンスラベリング(SL)タスクにおける長い尾のケースをよりよく扱うために、トレーニングセット全体から取得した類似のタグ付き例でバニラSLモデル出力を増強するグラフニューラルネットワークシーケンスラベリング(GNN-SL)を導入する。
検索したタグ付け例のすべてがモデル予測の恩恵を受けるわけではないため、異種グラフを構築し、グラフニューラルネットワーク(GNN)を用いて検索したタグ付け例と入力語列の間の情報を転送する。
隣人からの情報を集約する拡張ノードを使用して予測を行う。
この戦略により、モデルが類似のタグ付けサンプルを直接取得し、予測の一般的な品質を改善することができる。
我々は,NER(Nond Entity Recognition),POS(Part of Speech Tagging),CWS(Human Word Segmentation)の3つの典型的なシーケンスラベリングタスクについて,GNN-SLの顕著な性能を示すために,様々な実験を行った。
特に、GNN-SLはPKUで96.9 (+0.2)、CITYUで98.3 (+0.4)、MSRで98.5 (+0.2)、CWSタスクでASで96.9 (+0.2)、NERデータセットでSOTAのパフォーマンスに匹敵する結果を得る。
関連論文リスト
- PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
本稿では,グラフと属性空間の両方におけるノードペアの近接情報を活用するPROXIを紹介する。
標準機械学習(ML)モデルは競争力があり、最先端のGNNモデルよりも優れています。
ProXIによる従来のGNNの拡張はリンク予測性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:57:38Z) - Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
グラフニューラルネットワーク(GNN)は,グラフベースのデータから学ぶ上で大きな成功を収めている。
現在のGNNのキーとなるメカニズムはメッセージパッシングであり、ノードの機能は、その近隣から渡される情報に基づいて更新される。
本研究では,局所的特徴符号化(CLFE)を提案する。
論文 参考訳(メタデータ) (2024-05-08T01:51:19Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。