Decoherence and Quantum Measurement: The Missing Lecture
- URL: http://arxiv.org/abs/2212.02391v1
- Date: Mon, 5 Dec 2022 16:14:55 GMT
- Title: Decoherence and Quantum Measurement: The Missing Lecture
- Authors: Stephen D.H. Hsu
- Abstract summary: We give an elementary account of quantum measurement and related topics from the modern perspective of decoherence.
The discussion should be comprehensible to students who have completed a basic course in quantum mechanics with exposure to concepts such as Hilbert space, density matrices, and von Neumann projection.
- Score: 0.21320960069210473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We give an elementary account of quantum measurement and related topics from
the modern perspective of decoherence. The discussion should be comprehensible
to students who have completed a basic course in quantum mechanics with
exposure to concepts such as Hilbert space, density matrices, and von Neumann
projection (``wavefunction collapse'').
Related papers
- A remark on quantum measuring systems and the holographic principle [0.0]
We argue that the continuity of a quantum measurement subject follows as a fundamental consequence of the holographic principle after the classicalization of the quantum state of the bulk space.
arXiv Detail & Related papers (2024-09-17T22:59:47Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - A Geometry of entanglement and entropy [0.7373617024876725]
We provide a comprehensive overview of entanglement, highlighting its crucial role in quantum mechanics.
We discuss various methods for quantifying and characterizing entanglement through a geometric perspective.
An example of entanglement as an indispensable resource for the task of state teleportation is presented at the end.
arXiv Detail & Related papers (2024-02-24T18:26:32Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Two Results in the Quantum Theory of Measurements [44.99833362998488]
The first one clarifies and amends von Neumann's Measurement Postulate used in the Copenhagen interpretation of quantum mechanics.
The second one clarifies the relationship between events'' and measurements'' and the meaning of measurements in the $ETH$-Approach to quantum mechanics.
arXiv Detail & Related papers (2023-12-01T14:05:04Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Constraint Inequalities from Hilbert Space Geometry & Efficient Quantum
Computation [0.0]
Useful relations describing arbitrary parameters of given quantum systems can be derived from simple physical constraints imposed on the vectors in the corresponding Hilbert space.
We describe the procedure and point out that this parallels the necessary considerations that make Quantum Simulation of quantum fields possible.
We suggest how to use these ideas to guide and improve parameterized quantum circuits.
arXiv Detail & Related papers (2022-10-13T22:13:43Z) - Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate [0.0]
We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
arXiv Detail & Related papers (2020-12-03T13:05:36Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Lagrangian description of Heisenberg and Landau-von Neumann equations of
motion [55.41644538483948]
An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau-von Neumann equation on the manifold of quantum states which are isospectral with respect to a fixed reference quantum state.
arXiv Detail & Related papers (2020-05-04T22:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.