論文の概要: Domain Generalization Strategy to Train Classifiers Robust to
Spatial-Temporal Shift
- arxiv url: http://arxiv.org/abs/2212.02968v1
- Date: Tue, 6 Dec 2022 13:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 17:09:45.492107
- Title: Domain Generalization Strategy to Train Classifiers Robust to
Spatial-Temporal Shift
- Title(参考訳): 時空間シフトにロバストな分類器における領域一般化戦略
- Authors: Minseok Seo, Doyi Kim, Seungheon Shin, Eunbin Kim, Sewoong Ahn, Yeji
Choi,
- Abstract要約: 本研究では,気象予測モデルを時空間シフトに頑健にするためのトレーニング戦略を提案する。
We performed all experiment on the W4C22 Transfer dataset and achieved the 1st performance。
- 参考スコア(独自算出の注目度): 6.994786884130848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based weather prediction models have advanced significantly in
recent years. However, data-driven models based on deep learning are difficult
to apply to real-world applications because they are vulnerable to
spatial-temporal shifts. A weather prediction task is especially susceptible to
spatial-temporal shifts when the model is overfitted to locality and
seasonality. In this paper, we propose a training strategy to make the weather
prediction model robust to spatial-temporal shifts. We first analyze the effect
of hyperparameters and augmentations of the existing training strategy on the
spatial-temporal shift robustness of the model. Next, we propose an optimal
combination of hyperparameters and augmentation based on the analysis results
and a test-time augmentation. We performed all experiments on the W4C22
Transfer dataset and achieved the 1st performance.
- Abstract(参考訳): 深層学習に基づく天気予報モデルは近年大きく進歩している。
しかし、深層学習に基づくデータ駆動モデルは、空間的時間的シフトに弱いため、現実世界のアプリケーションに適用することは困難である。
気象予報タスクは、そのモデルが局所性と季節性に過度に適合する場合、特に時空間シフトに影響を受けやすい。
本稿では,気象予測モデルを時空間シフトに頑健にするためのトレーニング戦略を提案する。
まず,ハイパーパラメータと既存のトレーニング戦略の強化がモデルの時空間変動堅牢性に及ぼす影響を解析した。
次に,解析結果とテスト時間拡張に基づくハイパーパラメータと拡張の最適組み合わせを提案する。
w4c22転送データセットですべての実験を行い、最初の性能を達成した。
関連論文リスト
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Super Resolution On Global Weather Forecasts [0.1747623282473278]
グループは,グローバル気象予測の空間分解能を高めることにより,既存の深層学習に基づく予測手法の改善を目指している。
具体的には、大域的精度を1度から0.5度に高めることにより、グラフCast温度予測における超解像(SR)の実行に関心がある。
論文 参考訳(メタデータ) (2024-09-17T19:07:13Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。