Denoising diffusion probabilistic models for probabilistic energy
forecasting
- URL: http://arxiv.org/abs/2212.02977v5
- Date: Thu, 6 Apr 2023 13:13:47 GMT
- Title: Denoising diffusion probabilistic models for probabilistic energy
forecasting
- Authors: Esteban Hernandez Capel, Jonathan Dumas
- Abstract summary: This paper presents a promising deep learning generative approach called denoising diffusion probabilistic models.
It is a class of latent variable models which have recently demonstrated impressive results in the computer vision community.
We propose the first implementation of this model for energy forecasting using the open data of the Global Energy Forecasting Competition 2014.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scenario-based probabilistic forecasts have become vital for decision-makers
in handling intermittent renewable energies. This paper presents a recent
promising deep learning generative approach called denoising diffusion
probabilistic models. It is a class of latent variable models which have
recently demonstrated impressive results in the computer vision community.
However, to our knowledge, there has yet to be a demonstration that they can
generate high-quality samples of load, PV, or wind power time series, crucial
elements to face the new challenges in power systems applications. Thus, we
propose the first implementation of this model for energy forecasting using the
open data of the Global Energy Forecasting Competition 2014. The results
demonstrate this approach is competitive with other state-of-the-art deep
learning generative models, including generative adversarial networks,
variational autoencoders, and normalizing flows.
Related papers
- Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
Sequential models like recurrent neural networks and transformers have become standard for probabilistic time series forecasting.
Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting.
This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on interpolants and conditional generation with control features.
arXiv Detail & Related papers (2024-09-18T03:52:48Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Conditional Diffusion Probabilistic Model for Speech Enhancement [101.4893074984667]
We propose a novel speech enhancement algorithm that incorporates characteristics of the observed noisy speech signal into the diffusion and reverse processes.
In our experiments, we demonstrate strong performance of the proposed approach compared to representative generative models.
arXiv Detail & Related papers (2022-02-10T18:58:01Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Deep generative modeling for probabilistic forecasting in power systems [34.70329820717658]
This study uses a recent deep learning technique, the normalizing flows, to produce accurate probabilistic forecasts.
We show that our methodology is competitive with other state-of-the-art deep learning generative models.
arXiv Detail & Related papers (2021-06-17T10:41:57Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
This paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models.
We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios.
The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.
arXiv Detail & Related papers (2020-11-30T12:02:26Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
We address the problem of learning of a spreading model such that the predictions generated from this model are accurate.
We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach.
We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model.
arXiv Detail & Related papers (2020-07-13T17:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.