Synthetic Power Flow Data Generation Using Physics-Informed Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2504.17210v1
- Date: Thu, 24 Apr 2025 02:53:22 GMT
- Title: Synthetic Power Flow Data Generation Using Physics-Informed Denoising Diffusion Probabilistic Models
- Authors: Junfei Wang, Darshana Upadhyay, Marzia Zaman, Pirathayini Srikantha,
- Abstract summary: This paper presents a physics-informed generative framework for synthesizing feasible power flow data.<n>We evaluate the approach on the IEEE 14-bus and 30-bus benchmark systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many data-driven modules in smart grid rely on access to high-quality power flow data; however, real-world data are often limited due to privacy and operational constraints. This paper presents a physics-informed generative framework based on Denoising Diffusion Probabilistic Models (DDPMs) for synthesizing feasible power flow data. By incorporating auxiliary training and physics-informed loss functions, the proposed method ensures that the generated data exhibit both statistical fidelity and adherence to power system feasibility. We evaluate the approach on the IEEE 14-bus and 30-bus benchmark systems, demonstrating its ability to capture key distributional properties and generalize to out-of-distribution scenarios. Comparative results show that the proposed model outperforms three baseline models in terms of feasibility, diversity, and accuracy of statistical features. This work highlights the potential of integrating generative modelling into data-driven power system applications.
Related papers
- Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.<n>We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.<n>Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
arXiv Detail & Related papers (2025-03-24T19:12:39Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.
We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - Stable Port-Hamiltonian Neural Networks [12.888451750172404]
This article proposes stable port-Hamiltonian neural networks, a machine learning architecture that incorporates the physical biases of energy conservation or dissipation.
Evaluations with illustrative examples and real-world measurement data demonstrate the model's ability to generalize from sparse data.
The model's potential for data-driven surrogate modeling is highlighted in application to multi-physics simulation data.
arXiv Detail & Related papers (2025-02-04T16:57:02Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - Generating Synthetic Net Load Data with Physics-informed Diffusion Model [0.8848340429852071]
A conditional denoising neural network is designed to jointly train the parameters of the transition kernel of the diffusion model.
A comprehensive set of evaluation metrics is used to assess the accuracy and diversity of the generated synthetic net load data.
arXiv Detail & Related papers (2024-06-04T02:50:19Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
We employ Bayesian neural networks to capture uncertainties in a reacting flow model.
We demonstrate that BNN models can provide unique insights about the structure of uncertainty of the data-driven closure models.
The efficacy of the model is demonstrated by a priori evaluation on a dataset consisting of a variety of flame conditions and fuels.
arXiv Detail & Related papers (2024-02-28T22:19:55Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
arXiv Detail & Related papers (2023-10-31T14:37:37Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
Kernel density estimation (KDE) based models are popular choices for this task, but they fail to adapt to data regions with varying densities.
An adaptive KDE model is employed to circumvent this, where each kernel in the model has an individual bandwidth.
A modified expectation-maximization algorithm is employed to accelerate the optimization speed reliably.
arXiv Detail & Related papers (2023-10-05T14:08:42Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.