MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality
Microscopy
- URL: http://arxiv.org/abs/2212.03465v1
- Date: Wed, 7 Dec 2022 05:09:24 GMT
- Title: MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality
Microscopy
- Authors: Gihun Lee, Sangmook Kim, Joonkee Kim, Se-Young Yun
- Abstract summary: We propose MEDIAR, a holistic pipeline for cell instance segmentation under multi-modality.
We achieve a 0.9067 F1-score at the validation phase while satisfying the time budget.
To facilitate subsequent research, we provide the source code and trained model as open-source.
- Score: 9.405458160620533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell segmentation is a fundamental task for computational biology analysis.
Identifying the cell instances is often the first step in various downstream
biomedical studies. However, many cell segmentation algorithms, including the
recently emerging deep learning-based methods, still show limited generality
under the multi-modality environment. Weakly Supervised Cell Segmentation in
Multi-modality High-Resolution Microscopy Images was hosted at NeurIPS 2022 to
tackle this problem. We propose MEDIAR, a holistic pipeline for cell instance
segmentation under multi-modality in this challenge. MEDIAR harmonizes
data-centric and model-centric approaches as the learning and inference
strategies, achieving a 0.9067 F1-score at the validation phase while
satisfying the time budget. To facilitate subsequent research, we provide the
source code and trained model as open-source:
https://github.com/Lee-Gihun/MEDIAR
Related papers
- LKCell: Efficient Cell Nuclei Instance Segmentation with Large Convolution Kernels [32.157968641130545]
We propose LKCell, a high-accuracy and efficient cell segmentation method.
Its core insight lies in unleashing the potential of large convolution kernels to achieve computationally efficient large receptive fields.
We analyze the redundancy of previous methods and design a new segmentation decoder based on large convolution kernels.
arXiv Detail & Related papers (2024-07-25T14:07:49Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
We introduce scUNC, an innovative multi-view clustering approach tailored for single-cell data.
scUNC seamlessly integrates information from different views without the need for a predefined number of clusters.
We conducted a comprehensive evaluation of scUNC using three distinct single-cell datasets.
arXiv Detail & Related papers (2023-11-28T08:34:58Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
Deep learning (DL) shows powerful potential in cell segmentation tasks, but suffers from poor generalization.
In this paper, we introduce a novel semi-supervised cell segmentation method called Multi-Microscopic-view Cell semi-supervised (MMCS)
MMCS can train cell segmentation models utilizing less labeled multi-posture cell images with different microscopy well.
It achieves an F1-score of 0.8239 and the running time for all cases is within the time tolerance.
arXiv Detail & Related papers (2023-03-21T08:08:13Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - Contrastive Cycle Adversarial Autoencoders for Single-cell Multi-omics
Alignment and Integration [0.0]
We propose a novel framework to align and integrate single-cell RNA-seq data and single-cell ATAC-seq data.
Compared with the other state-of-the-art methods, our method performs better in both simulated and real single-cell data.
arXiv Detail & Related papers (2021-12-05T13:00:58Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z) - Bayesian Generative Models for Knowledge Transfer in MRI Semantic
Segmentation Problems [15.24006130659201]
We propose a knowledge transfer method between diseases via the Generative Bayesian Prior network.
Our approach is compared to a pre-train approach and random initialization and obtains the best results in terms of Dice Similarity Coefficient metric for the small subsets of the Brain Tumor- 2018 database.
arXiv Detail & Related papers (2020-05-26T11:42:17Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.