SeqLink: A Robust Neural-ODE Architecture for Modelling Partially Observed Time Series
- URL: http://arxiv.org/abs/2212.03560v3
- Date: Mon, 5 Aug 2024 04:35:48 GMT
- Title: SeqLink: A Robust Neural-ODE Architecture for Modelling Partially Observed Time Series
- Authors: Futoon M. Abushaqra, Hao Xue, Yongli Ren, Flora D. Salim,
- Abstract summary: We introduce SeqLink, an innovative neural architecture designed to enhance the robustness of sequence representation.
We demonstrate that SeqLink improves the modelling of intermittent time series, consistently outperforming state-of-the-art approaches.
- Score: 11.261457967759688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ordinary Differential Equations (ODE) based models have become popular as foundation models for solving many time series problems. Combining neural ODEs with traditional RNN models has provided the best representation for irregular time series. However, ODE-based models typically require the trajectory of hidden states to be defined based on either the initial observed value or the most recent observation, raising questions about their effectiveness when dealing with longer sequences and extended time intervals. In this article, we explore the behaviour of the ODE models in the context of time series data with varying degrees of sparsity. We introduce SeqLink, an innovative neural architecture designed to enhance the robustness of sequence representation. Unlike traditional approaches that solely rely on the hidden state generated from the last observed value, SeqLink leverages ODE latent representations derived from multiple data samples, enabling it to generate robust data representations regardless of sequence length or data sparsity level. The core concept behind our model is the definition of hidden states for the unobserved values based on the relationships between samples (links between sequences). Through extensive experiments on partially observed synthetic and real-world datasets, we demonstrate that SeqLink improves the modelling of intermittent time series, consistently outperforming state-of-the-art approaches.
Related papers
- Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs [0.6562256987706128]
HYPA-DBGNN is a novel two-step approach that combines the inference of anomalous sequential patterns in time series data on graphs.
Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs.
Our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies.
arXiv Detail & Related papers (2024-06-24T11:41:12Z) - Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting [5.359176539960004]
Irregularly sampled time series with missing values are often observed in multiple real-world applications such as healthcare, climate and astronomy.
We propose a family of models called Functional Latent Dynamics (FLD)
Instead of solving the Ordinary Differential Equation (ODE), we use simple curves which exist at all time points to specify the continuous latent state in the model.
arXiv Detail & Related papers (2024-05-06T15:53:55Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
We propose PolyODE, a formulation that enforces long-range memory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and we demonstrate that it outperforms previous works in the reconstruction of past and future data.
arXiv Detail & Related papers (2023-03-03T10:49:09Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
We propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE.
Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4.
We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets.
arXiv Detail & Related papers (2022-12-24T15:17:42Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.