論文の概要: Node-oriented Spectral Filtering for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2212.03654v1
- Date: Wed, 7 Dec 2022 14:15:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 17:09:18.719587
- Title: Node-oriented Spectral Filtering for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのためのノード指向スペクトルフィルタリング
- Authors: Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Youru Li, and Yao Zhao
- Abstract要約: グラフニューラルネットワーク(GNN)は、ホモ親和性グラフデータに顕著な性能を示す。
一般に、グローバルな視点からグラフ上の普遍的なスペクトルフィルタを学習することは、局所的なパターンの変化に適応する上で非常に困難である。
textbfunderlineGraph textbfunderlineNeural textbfunderlineNetwork (NFGNN) のための textbfunderlineNode 指向スペクトルtextbfunderlineFiltering を提案する。
- 参考スコア(独自算出の注目度): 29.521686618844452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have shown remarkable performance on homophilic
graph data while being far less impressive when handling non-homophilic graph
data due to the inherent low-pass filtering property of GNNs. In general, since
the real-world graphs are often a complex mixture of diverse subgraph patterns,
learning a universal spectral filter on the graph from the global perspective
as in most current works may still suffer from great difficulty in adapting to
the variation of local patterns. On the basis of the theoretical analysis on
local patterns, we rethink the existing spectral filtering methods and propose
the \textbf{\underline{N}}ode-oriented spectral \textbf{\underline{F}}iltering
for \textbf{\underline{G}}raph \textbf{\underline{N}}eural
\textbf{\underline{N}}etwork (namely NFGNN). By estimating the node-oriented
spectral filter for each node, NFGNN is provided with the capability of precise
local node positioning via the generalized translated operator, thus
discriminating the variations of local homophily patterns adaptively.
Meanwhile, the utilization of re-parameterization brings a good trade-off
between global consistency and local sensibility for learning the node-oriented
spectral filters. Furthermore, we theoretically analyze the localization
property of NFGNN, demonstrating that the signal after adaptive filtering is
still positioned around the corresponding node. Extensive experimental results
demonstrate that the proposed NFGNN achieves more favorable performance.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、GNNの固有のローパスフィルタリング特性により、非ホモフィルグラフデータを扱う場合、好ましくないグラフデータに対して顕著な性能を示した。
一般に、実世界のグラフは多彩なサブグラフパターンの複雑な混合であることが多いので、現在のほとんどの作品のように、グローバルの観点からグラフ上の普遍的スペクトルフィルタを学ぶことは、局所的なパターンの変化に適応するのが非常に困難である。
局所パターンに関する理論的解析に基づいて, 既存のスペクトルフィルタリング法を再考し, \textbf{\underline{n}}ode-oriented spectral \textbf{\underline{f}}iltering for \textbf{\underline{g}}raph \textbf{\underline{n}}eural \textbf{\underline{n}}etwork (nfgnn)を提案する。
各ノードのノード指向のスペクトルフィルタを推定することにより、nfgnnは一般化された変換演算子を介して正確な局所ノード位置決め機能を備えることにより、局所ホモフィリパターンのバリエーションを適応的に判別する。
一方、再パラメータ化の利用は、ノード指向スペクトルフィルタを学習するための大域的一貫性と局所感度のトレードオフをもたらす。
さらに,NFGNNの局所化特性を理論的に解析し,適応フィルタリング後の信号が対応するノードの周囲に留まっていることを示す。
実験の結果,提案したNFGNNの方が良好な性能を示した。
関連論文リスト
- Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
我々は、Dual-Frequency Filtering Self-Aware Graph Neural Networks (DFGNN)を提案する。
DFGNNは低域通過フィルタと高域通過フィルタを統合し、滑らかで詳細な位相的特徴を抽出する。
フィルター比を動的に調整し、ホモフィルグラフとヘテロフィルグラフの両方に対応する。
論文 参考訳(メタデータ) (2024-11-18T04:57:05Z) - Node-wise Filtering in Graph Neural Networks: A Mixture of Experts Approach [58.8524608686851]
グラフニューラルネットワーク(GNN)は、多様なグラフ構造パターンをまたいだノード分類タスクに非常に効果的であることが証明されている。
伝統的に、GNNは均一なグローバルフィルタ(通常、ホモフィルグラフのローパスフィルタとヘテロフィルグラフのハイパスフィルタ)を用いる。
我々は,異なるノードに対する適切なフィルタを適応的に選択するために,専門家の混在を利用した新しいGNNフレームワークNode-MoEを紹介する。
論文 参考訳(メタデータ) (2024-06-05T17:12:38Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - Rethinking Spectral Graph Neural Networks with Spatially Adaptive Filtering [31.595664867365322]
スペクトルグラフニューラルネットワーク(GNN)はスペクトル領域において十分に確立されているが、近似への実際の依存は空間領域への深いリンクを意味する。
スペクトルと空間アグリゲーションの間に理論的な関係を確立し、スペクトルが元のグラフを適応した新しいグラフに暗黙的に導く本質的な相互作用を明らかにする。
本稿では,非局所的な補助的なアグリゲーションのためのスペクトルフィルタリングにより適応された新しいグラフを利用する空間適応フィルタリング(SAF)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T09:12:31Z) - ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
本稿では,適応スペクトルウェーブレット変換を用いた自己教師付きグラフニューラルネットワーク(ASWT-SGNN)を提案する。
ASWT-SGNNは高密度スペクトル領域におけるフィルタ関数を正確に近似し、コストの高い固有分解を避ける。
ノード分類タスクにおける最先端モデルに匹敵するパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-10T03:07:42Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Stability to Deformations of Manifold Filters and Manifold Neural Networks [89.53585099149973]
本論文は、多様体(M)畳み込みフィルタとニューラルネットワーク(NN)を定義し、研究する。
この論文の主な技術的貢献は、多様体の滑らかな変形に対する多様体フィルタとMNNの安定性を分析することである。
論文 参考訳(メタデータ) (2021-06-07T15:41:03Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Framework for Designing Filters of Spectral Graph Convolutional Neural
Networks in the Context of Regularization Theory [1.0152838128195467]
グラフ畳み込みニューラルネットワーク(GCNN)はグラフ学習に広く利用されている。
グラフ上の滑らかさ関数はグラフラプラシアンの言葉で定義できる。
本稿では,グラフラプラシアンの正規化特性について検討し,スペクトルGCNNにおける正規化フィルタ設計のための一般化されたフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-29T06:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。