論文の概要: Node-wise Filtering in Graph Neural Networks: A Mixture of Experts Approach
- arxiv url: http://arxiv.org/abs/2406.03464v1
- Date: Wed, 5 Jun 2024 17:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:02:29.836603
- Title: Node-wise Filtering in Graph Neural Networks: A Mixture of Experts Approach
- Title(参考訳): グラフニューラルネットワークにおけるノードワイズフィルタリング : エキスパートアプローチの混合
- Authors: Haoyu Han, Juanhui Li, Wei Huang, Xianfeng Tang, Hanqing Lu, Chen Luo, Hui Liu, Jiliang Tang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、多様なグラフ構造パターンをまたいだノード分類タスクに非常に効果的であることが証明されている。
伝統的に、GNNは均一なグローバルフィルタ(通常、ホモフィルグラフのローパスフィルタとヘテロフィルグラフのハイパスフィルタ)を用いる。
我々は,異なるノードに対する適切なフィルタを適応的に選択するために,専門家の混在を利用した新しいGNNフレームワークNode-MoEを紹介する。
- 参考スコア(独自算出の注目度): 58.8524608686851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have proven to be highly effective for node classification tasks across diverse graph structural patterns. Traditionally, GNNs employ a uniform global filter, typically a low-pass filter for homophilic graphs and a high-pass filter for heterophilic graphs. However, real-world graphs often exhibit a complex mix of homophilic and heterophilic patterns, rendering a single global filter approach suboptimal. In this work, we theoretically demonstrate that a global filter optimized for one pattern can adversely affect performance on nodes with differing patterns. To address this, we introduce a novel GNN framework Node-MoE that utilizes a mixture of experts to adaptively select the appropriate filters for different nodes. Extensive experiments demonstrate the effectiveness of Node-MoE on both homophilic and heterophilic graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、多様なグラフ構造パターンをまたいだノード分類タスクに非常に効果的であることが証明されている。
伝統的に、GNNは均一なグローバルフィルタ(通常、ホモフィルグラフのローパスフィルタとヘテロフィルグラフのハイパスフィルタ)を用いる。
しかし、実世界のグラフは、しばしばホモ友愛的なパターンとヘテロ親愛的なパターンの複雑な混合を示し、単一のグローバルフィルタアプローチが最適である。
本研究では,あるパターンに最適化されたグローバルフィルタが,異なるパターンを持つノードの性能に悪影響を及ぼすことを示す。
そこで本研究では,異なるノードに対する適切なフィルタを適応的に選択するために,専門家の混在を利用した新しいGNNフレームワークNode-MoEを提案する。
大規模な実験は、ホモフィルグラフとヘテロフィルグラフの両方において、Node-MoEの有効性を示す。
関連論文リスト
- Addressing Heterogeneity and Heterophily in Graphs: A Heterogeneous Heterophilic Spectral Graph Neural Network [48.05273145974434]
異種不テロ親和性スペクトルグラフニューラルネットワーク(H2SGNN)を提案する。
H2SGNNは、局所独立フィルタリングとグローバルハイブリッドフィルタリングというデュアルモジュールアプローチを採用している。
4つの実世界のデータセットに対する大規模な実証評価は、最先端の手法と比較してH2SGNNの優位性を示している。
論文 参考訳(メタデータ) (2024-10-17T09:23:53Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Graph Sparsification via Mixture of Graphs [67.40204130771967]
そこで我々はMixture-of-Graphs (MoG)を導入し、各ノードに対して動的に調整されたプルーニングソリューションを選択する。
MoGには複数のスパシファイアの専門家が組み込まれており、それぞれが独自のスパーシリティレベルとプルーニング基準によって特徴付けられ、各ノードに対して適切な専門家を選択する。
5つのGNNを備えた4つの大規模OGBデータセットと2つのスーパーピクセルデータセットの実験により、MoGはより高い空間レベルのサブグラフを識別することを示した。
論文 参考訳(メタデータ) (2024-05-23T07:40:21Z) - Graph Neural Networks with Diverse Spectral Filtering [32.69196871253339]
スペクトルグラフニューラルネットワーク(GNN)は、グラフ機械学習において大きな成功を収めている。
本稿では,ノード固有のフィルタ重みを自動的に学習する新しいスペクトルフィルタリング(DSF)フレームワークを提案する。
我々のフレームワークは、ノード分類タスクにおいて、モデル性能を最大4.92%向上させることができる。
論文 参考訳(メタデータ) (2023-12-14T15:38:12Z) - GPatcher: A Simple and Adaptive MLP Model for Alleviating Graph
Heterophily [15.93465948768545]
グラフニューラルネットワーク(GNN)フィルタにおけるグラフヘテロフィリーの影響を解明する。
我々は,パッチ・ミクサーアーキテクチャを利用したGPatcherというシンプルで強力なGNNを提案する。
本モデルでは, ノード分類において, 人気ホモフィリーGNNや最先端ヘテロフィリーGNNと比較して, 優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-25T20:57:35Z) - Node-oriented Spectral Filtering for Graph Neural Networks [38.0315325181726]
グラフニューラルネットワーク(GNN)は、ホモ親和性グラフデータに顕著な性能を示す。
一般に、グローバルな視点からグラフ上の普遍的なスペクトルフィルタを学習することは、局所的なパターンの変化に適応する上で非常に困難である。
グラフニューラルネットワーク(NFGNN)のためのノード指向スペクトルフィルタリングを提案する。
論文 参考訳(メタデータ) (2022-12-07T14:15:28Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-03-26T00:35:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。