論文の概要: Stability to Deformations of Manifold Filters and Manifold Neural Networks
- arxiv url: http://arxiv.org/abs/2106.03725v5
- Date: Thu, 14 Mar 2024 18:39:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 08:10:52.914389
- Title: Stability to Deformations of Manifold Filters and Manifold Neural Networks
- Title(参考訳): マニフォールドフィルタとマニフォールドニューラルネットワークの変形に対する安定性
- Authors: Zhiyang Wang, Luana Ruiz, Alejandro Ribeiro,
- Abstract要約: 本論文は、多様体(M)畳み込みフィルタとニューラルネットワーク(NN)を定義し、研究する。
この論文の主な技術的貢献は、多様体の滑らかな変形に対する多様体フィルタとMNNの安定性を分析することである。
- 参考スコア(独自算出の注目度): 89.53585099149973
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The paper defines and studies manifold (M) convolutional filters and neural networks (NNs). \emph{Manifold} filters and MNNs are defined in terms of the Laplace-Beltrami operator exponential and are such that \emph{graph} (G) filters and neural networks (NNs) are recovered as discrete approximations when the manifold is sampled. These filters admit a spectral representation which is a generalization of both the spectral representation of graph filters and the frequency response of standard convolutional filters in continuous time. The main technical contribution of the paper is to analyze the stability of manifold filters and MNNs to smooth deformations of the manifold. This analysis generalizes known stability properties of graph filters and GNNs and it is also a generalization of known stability properties of standard convolutional filters and neural networks in continuous time. The most important observation that follows from this analysis is that manifold filters, same as graph filters and standard continuous time filters, have difficulty discriminating high frequency components in the presence of deformations. This is a challenge that can be ameliorated with the use of manifold, graph, or continuous time neural networks. The most important practical consequence of this analysis is to shed light on the behavior of graph filters and GNNs in large-scale graphs.
- Abstract(参考訳): 本稿では、多様体(M)畳み込みフィルタとニューラルネットワーク(NN)を定義し、研究する。
ラプラス・ベルトラミ作用素指数(英語版)の項で定義され、多様体がサンプリングされたときの離散近似として \emph{graph} (G) フィルタとニューラルネットワーク(NN) が復元される。
これらのフィルタは、グラフフィルタのスペクトル表現と標準畳み込みフィルタの周波数応答を連続的に一般化したスペクトル表現を持つ。
この論文の主な技術的貢献は、多様体の滑らかな変形に対する多様体フィルタとMNNの安定性を分析することである。
この分析は、グラフフィルタとGNNの既知の安定性特性を一般化し、標準畳み込みフィルタとニューラルネットワークの既知の安定性特性を連続的に一般化する。
この分析から得られた最も重要な観測は、グラフフィルタや標準連続時間フィルタと同様に、変形の有無で高周波成分の識別が難しいことである。
これは、多様体、グラフ、または連続時間ニューラルネットワークの使用によって改善できる課題である。
この分析の最も重要な実践的成果は、大規模グラフにおけるグラフフィルタとGNNの挙動に光を当てることである。
関連論文リスト
- Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
我々は、Dual-Frequency Filtering Self-Aware Graph Neural Networks (DFGNN)を提案する。
DFGNNは低域通過フィルタと高域通過フィルタを統合し、滑らかで詳細な位相的特徴を抽出する。
フィルター比を動的に調整し、ホモフィルグラフとヘテロフィルグラフの両方に対応する。
論文 参考訳(メタデータ) (2024-11-18T04:57:05Z) - GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - Shape-aware Graph Spectral Learning [36.63516222161871]
スペクトルグラフニューラルネットワーク(GNN)は、メッセージパッシングGNNの限界を超える能力に注目されている。
いくつかの研究は、好ましいグラフ周波数がグラフホモフィリーレベルと関連していることを実証的に示している。
このグラフ周波数とホモフィリー・ヘテロフィリーグラフの関係は、既存のスペクトルGNNにおいて体系的に解析され検討されていない。
我々は、任意のスペクトルフィルタを学習し、対応するホモフィリーレベルの所望の形状に関する事前知識を組み込むことができるニュートン補間に基づくスペクトルフィルタの形状認識正則化を提案する。
論文 参考訳(メタデータ) (2023-10-16T04:57:30Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - Node-oriented Spectral Filtering for Graph Neural Networks [38.0315325181726]
グラフニューラルネットワーク(GNN)は、ホモ親和性グラフデータに顕著な性能を示す。
一般に、グローバルな視点からグラフ上の普遍的なスペクトルフィルタを学習することは、局所的なパターンの変化に適応する上で非常に困難である。
グラフニューラルネットワーク(NFGNN)のためのノード指向スペクトルフィルタリングを提案する。
論文 参考訳(メタデータ) (2022-12-07T14:15:28Z) - Stability of Aggregation Graph Neural Networks [153.70485149740608]
グラフの摂動を考慮したアグリゲーショングラフニューラルネットワーク(Agg-GNN)の安定性特性について検討した。
安定性境界は各ノードに作用するCNNの第1層におけるフィルタの特性によって定義される。
また、Agg-GNNでは、写像演算子の選択性は、CNNステージの第1層においてのみフィルタの特性に結びついていると結論付けている。
論文 参考訳(メタデータ) (2022-07-08T03:54:52Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Interpretable Stability Bounds for Spectral Graph Filters [12.590415345079991]
フィルタの安定性について検討し,フィルタ出力の変化に関する新しい解釈可能な上界を提供する。
この上界は、スペクトルグラフフィルタが安定であるときに、グラフの構造的性質の観点から推論することができる。
論文 参考訳(メタデータ) (2021-02-18T19:25:52Z) - Framework for Designing Filters of Spectral Graph Convolutional Neural
Networks in the Context of Regularization Theory [1.0152838128195467]
グラフ畳み込みニューラルネットワーク(GCNN)はグラフ学習に広く利用されている。
グラフ上の滑らかさ関数はグラフラプラシアンの言葉で定義できる。
本稿では,グラフラプラシアンの正規化特性について検討し,スペクトルGCNNにおける正規化フィルタ設計のための一般化されたフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-29T06:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。