Nonreciprocal total cross section of quantum metasurfaces
- URL: http://arxiv.org/abs/2212.03761v1
- Date: Wed, 7 Dec 2022 16:32:06 GMT
- Title: Nonreciprocal total cross section of quantum metasurfaces
- Authors: Nikita Nefedkin, Michele Cotrufo, Andrea Al\`u
- Abstract summary: Nonreciprocity originating from classical interactions among nonlinear scatterers has been attracting increasing attention in the quantum community.
We show that large nonreciprocal responses can be obtained in such nonlinear systems by controlling the position of the atoms and their transition frequencies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonreciprocity originating from classical interactions among nonlinear
scatterers has been attracting increasing attention in the quantum community,
offering a promising tool to control excitation transfer for quantum
information processing and quantum computing. In this work, we explore the
possibility of realizing largely nonreciprocal total cross sections for a pair
of quantum metasurfaces formed by two parallel periodic arrays of two-level
atoms. We show that large nonreciprocal responses can be obtained in such
nonlinear systems by controlling the position of the atoms and their transition
frequencies, without requiring that the environment in which the atoms are
placed is nonreciprocal. We demonstrate the connection of this effect with the
population of a slowly-decaying dark state, which is critical to obtain large
nonreciprocal responses.
Related papers
- Quantum Cross Nonlinearity for Photon-Number-Resolving Nondestructive Detection [2.5999216906151013]
We present an unconventional mechanism for quantum nonlinearity in a V-type quantum emitter (QE) and two Fabry-Perot cavities.
The system exhibits a strong quantum nonlinear control in the transmission even at the single-photon level.
By leveraging this quantum cross nonlinearity, we show photon-number-resolving quantum nondestructive detection.
arXiv Detail & Related papers (2024-08-15T00:53:44Z) - Diverse Entanglement Mechanisms in Multimode Nonlinear Continuous
Variables [0.5181355744034635]
Non-Gaussian entangled states play a crucial role in harnessing quantum advantage in quantum information.
How to fully characterize N-partite (N > 3) non-Gaussian entanglement without quantum state tomography remains elusive.
Here, we propose several necessary and sufficient conditions for the positive-partial-transposition separability of multimode nonlinear quantum states.
arXiv Detail & Related papers (2023-12-04T00:20:43Z) - Observation of universal dissipative dynamics in strongly correlated
quantum gas [7.693218037362169]
We observe a universal dissipative dynamics in strongly correlated one-dimensional quantum gases.
This method could have broad applications in detecting strongly correlated features, including spin-charge separations and Fermi arcs in quantum materials.
arXiv Detail & Related papers (2023-09-19T02:32:02Z) - Proposal of ensemble qubits with two-atom decay [2.5900317472963152]
We propose and analyze a novel approach to implement ensemble qubits.
The required anharmonicity is provided by a simultaneous decay of two atoms.
For an atomic ensemble, the two-atom decay generates and stabilizes a 2D quantum manifold.
arXiv Detail & Related papers (2023-02-14T01:51:50Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum fluctuations and correlations in open quantum Dicke models [0.0]
In the vicinity of ground-state phase transitions quantum correlations can display non-analytic behavior and critical scaling.
Here we consider as a paradigmatic setting the superradiant phase transition of the open quantum Dicke model.
We show that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff approximation, rather unexpectedly leads to an enhancement of collective quantum correlations.
arXiv Detail & Related papers (2021-10-25T18:15:05Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.