Trotter Errors and the Emergence of Chaos in Quantum Simulation
- URL: http://arxiv.org/abs/2212.03843v2
- Date: Mon, 19 Dec 2022 19:31:43 GMT
- Title: Trotter Errors and the Emergence of Chaos in Quantum Simulation
- Authors: Kevin W. Kuper, Jon P. Pajaud, Karthik Chinni, Pablo M. Poggi, and
Poul S. Jessen
- Abstract summary: We run quantum simulations on a small, highly accurate quantum processor.
We show how one can optimize simulation accuracy by balancing algorithmic (Trotter) errors against native errors specific to the quantum hardware at hand.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As noisy intermediate-scale quantum (NISQ) processors increase in size and
complexity, their use as general purpose quantum simulators will rely on
algorithms based on the Trotter-Suzuki expansion. We run quantum simulations on
a small, highly accurate quantum processor, and show how one can optimize
simulation accuracy by balancing algorithmic (Trotter) errors against native
errors specific to the quantum hardware at hand. We further study the interplay
between native errors, Trotter errors, and the emergence of chaos as seen in
measurements of a time averaged fidelity-out-of-time-ordered-correlator
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Robustness of near-thermal dynamics on digital quantum computers [4.124390946636936]
We show that Trotterized quantum circuits are more robust to both quantum gate errors and Trotter (discretization) errors than is widely assumed.
We use a new theoretical tool -- a statistical ensemble of random product states that approximates a thermal state.
arXiv Detail & Related papers (2024-10-14T17:57:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Optimal-order Trotter-Suzuki decomposition for quantum simulation on noisy quantum computers [0.05343200742664294]
We show that when the gate error is decreased by approximately an order of magnitude relative to typical modern values, higher-order Trotterization becomes advantageous.
This form of Trotterization yields a global minimum of the overall simulation error.
arXiv Detail & Related papers (2024-05-02T09:48:52Z) - Improved Digital Quantum Simulation by Non-Unitary Channels [0.5999777817331317]
We study the performance of non-unitary simulation channels and consider the error structure of channels constructed from a weighted average of unitary circuits.
We show that averaging over just a few simulation circuits can significantly reduce the Trotterization error for both single-step short-time and multi-step long-time simulations.
arXiv Detail & Related papers (2023-07-24T18:00:02Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Error-mitigated deep-circuit quantum simulation: steady state and
relaxation rate problems [4.762232147934851]
We show that digital quantum simulation of closed quantum systems are robust against the accumulation of Trotter errors.
We propose a new error-mitigation technique based on the scaling behavior in the vicinity of the critical point of a quantum phase transition.
arXiv Detail & Related papers (2021-11-18T11:01:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.