From underwater to aerial: a novel multi-scale knowledge distillation approach for coral reef monitoring
- URL: http://arxiv.org/abs/2502.17883v1
- Date: Tue, 25 Feb 2025 06:12:33 GMT
- Title: From underwater to aerial: a novel multi-scale knowledge distillation approach for coral reef monitoring
- Authors: Matteo Contini, Victor Illien, Julien Barde, Sylvain Poulain, Serge Bernard, Alexis Joly, Sylvain Bonhommeau,
- Abstract summary: This study presents a novel multi-scale approach to coral reef monitoring, integrating fine-scale underwater imagery with medium-scale aerial imagery.<n>A transformer-based deep-learning model is trained on underwater images to detect the presence of 31 classes covering various coral morphotypes, associated fauna, and habitats.<n>The results show that the multi-scale methodology successfully extends fine-scale classification to larger reef areas, achieving a high degree of accuracy in predicting coral morphotypes and associated habitats.
- Score: 1.0644791181419937
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Drone-based remote sensing combined with AI-driven methodologies has shown great potential for accurate mapping and monitoring of coral reef ecosystems. This study presents a novel multi-scale approach to coral reef monitoring, integrating fine-scale underwater imagery with medium-scale aerial imagery. Underwater images are captured using an Autonomous Surface Vehicle (ASV), while aerial images are acquired with an aerial drone. A transformer-based deep-learning model is trained on underwater images to detect the presence of 31 classes covering various coral morphotypes, associated fauna, and habitats. These predictions serve as annotations for training a second model applied to aerial images. The transfer of information across scales is achieved through a weighted footprint method that accounts for partial overlaps between underwater image footprints and aerial image tiles. The results show that the multi-scale methodology successfully extends fine-scale classification to larger reef areas, achieving a high degree of accuracy in predicting coral morphotypes and associated habitats. The method showed a strong alignment between underwater-derived annotations and ground truth data, reflected by an AUC (Area Under the Curve) score of 0.9251. This shows that the integration of underwater and aerial imagery, supported by deep-learning models, can facilitate scalable and accurate reef assessments. This study demonstrates the potential of combining multi-scale imaging and AI to facilitate the monitoring and conservation of coral reefs. Our approach leverages the strengths of underwater and aerial imagery, ensuring the precision of fine-scale analysis while extending it to cover a broader reef area.
Related papers
- Multi-label classification for multi-temporal, multi-spatial coral reef condition monitoring using vision foundation model with adapter learning [20.74182654369854]
This study introduces an approach integrating the DINOv2 vision foundation model with the LoRA fine-tuning method.
The experimental results demonstrate that the DINOv2-LoRA model achieved superior accuracy, with a match ratio of 64.77%, compared to 60.34% achieved by the best conventional model.
arXiv Detail & Related papers (2025-03-29T08:32:44Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.
This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
Coral reefs are vital ecosystems that are under increasing threat due to local human impacts and climate change.
In this paper, we present an automatic coral detection system utilizing the You Only Look Once deep learning model.
arXiv Detail & Related papers (2024-04-03T08:00:46Z) - Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning [4.8902950939676675]
This paper presents a new paradigm for mapping underwater environments from ego-motion video.
We show high-precision 3D semantic mapping at unprecedented scale with significantly reduced required labor costs.
Our approach significantly scales up coral reef monitoring by taking a leap towards fully automatic analysis of video transects.
arXiv Detail & Related papers (2023-09-22T11:35:10Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
This study utilizes a specialized dataset consisting of 923 images collected from Flickr using the Flickr API.
The method employed in this research involves the use of machine learning models, particularly convolutional neural networks (CNN)
It was found that a from-scratch ResNet model can outperform pretrained models in terms of precision and accuracy.
arXiv Detail & Related papers (2023-08-08T15:30:08Z) - Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in
Coral Reefs with Vision-Guided Autonomous Underwater Vehicles [6.658103076536836]
Biological hotspot detection can help coral reef managers prioritize limited resources for monitoring and intervention tasks.
Here, we explore the use of autonomous underwater vehicles (AUVs) with cameras, coupled with visual detectors and photogrammetry, to map and identify these hotspots.
To the best of our knowledge, we present one of the first attempts at using an AUV to gather visually-observed, fine-grain biological hotspot maps.
arXiv Detail & Related papers (2023-05-03T16:12:47Z) - Aerial Diffusion: Text Guided Ground-to-Aerial View Translation from a
Single Image using Diffusion Models [72.76182801289497]
We present a novel method, Aerial Diffusion, for generating aerial views from a single ground-view image using text guidance.
We address two main challenges corresponding to domain gap between the ground-view and the aerial view.
Aerial Diffusion is the first approach that performs ground-to-aerial translation in an unsupervised manner.
arXiv Detail & Related papers (2023-03-15T22:26:09Z) - Combining Photogrammetric Computer Vision and Semantic Segmentation for
Fine-grained Understanding of Coral Reef Growth under Climate Change [6.335630432207172]
Corals are the primary habitat-building life-form on reefs that support a quarter of the species in the ocean.
For the first time, 3D fine-grained semantic modeling and rugosity evaluation of coral reefs have been completed at millimeter (mm) accuracy.
arXiv Detail & Related papers (2022-12-08T08:09:57Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.