論文の概要: Models Developed for Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2212.04377v1
- Date: Thu, 8 Dec 2022 16:18:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 14:39:29.803409
- Title: Models Developed for Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークのためのモデル
- Authors: Shahriar Rezghi Shirsavar, Abdol-Hossein Vahabie, Mohammad-Reza A.
Dehaqani
- Abstract要約: スパイキングニューラルネットワーク(SNN)は長い間存在しており、脳のダイナミクスを理解するために研究されてきた。
本研究では,画像分類タスクにおけるSNNの構造と性能について検討した。
比較は、これらのネットワークがより複雑な問題に対して優れた能力を示すことを示している。
- 参考スコア(独自算出の注目度): 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emergence of deep neural networks (DNNs) has raised enormous attention
towards artificial neural networks (ANNs) once again. They have become the
state-of-the-art models and have won different machine learning challenges.
Although these networks are inspired by the brain, they lack biological
plausibility, and they have structural differences compared to the brain.
Spiking neural networks (SNNs) have been around for a long time, and they have
been investigated to understand the dynamics of the brain. However, their
application in real-world and complicated machine learning tasks were limited.
Recently, they have shown great potential in solving such tasks. Due to their
energy efficiency and temporal dynamics there are many promises in their future
development. In this work, we reviewed the structures and performances of SNNs
on image classification tasks. The comparisons illustrate that these networks
show great capabilities for more complicated problems. Furthermore, the simple
learning rules developed for SNNs, such as STDP and R-STDP, can be a potential
alternative to replace the backpropagation algorithm used in DNNs.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の出現は、再び人工知能ニューラルネットワーク(ANN)に対して大きな注目を集めている。
それらは最先端のモデルとなり、さまざまな機械学習課題を勝ち取った。
これらのネットワークは脳にインスパイアされているが、生物学的な可能性に欠けており、脳と構造的な違いがある。
スパイキングニューラルネットワーク(SNN)は長い間存在しており、脳のダイナミクスを理解するために研究されてきた。
しかし、現実世界や複雑な機械学習タスクでの応用は限られていた。
近年,これらの課題を解決できる可能性が高まっている。
エネルギー効率と時間的ダイナミクスのため、将来の開発には多くの期待が持たれている。
本研究では,画像分類タスクにおけるSNNの構造と性能について検討した。
比較は、これらのネットワークがより複雑な問題に対して優れた能力を示すことを示している。
さらに、STDPやR-STDPのようなSNN向けに開発された単純な学習規則は、DNNで使われるバックプロパゲーションアルゴリズムを置き換える代替となる可能性がある。
関連論文リスト
- A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、特定の脳のような特性を持つ、生物学的にインスパイアされたニューラルネットワークのモデルである。
SNNでは、スパイクトレインとスパイクトレインを通してニューロン間の通信が行われる。
SNPSは形式的オートマトン原理に基づくSNNの分岐と見なすことができる。
論文 参考訳(メタデータ) (2024-03-27T14:26:41Z) - Curriculum Design Helps Spiking Neural Networks to Classify Time Series [16.402675046686834]
スパイキングニューラルネットワーク(SNN)は、ニューラルネットワーク(ANN)よりも時系列データをモデル化する可能性が大きい
この研究において、脳にインスパイアされた科学によって啓蒙され、構造だけでなく学習過程も人間に似ていなければならないことが判明した。
論文 参考訳(メタデータ) (2023-12-26T02:04:53Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Is it conceivable that neurogenesis, neural Darwinism, and species
evolution could all serve as inspiration for the creation of evolutionary
deep neural networks? [0.0]
Deep Neural Networks (DNN)は、人工知能ニューラルネットワークを使って構築されている。
本稿では,脳の2次元進化の重要性を強調する。
また、DNNの正規化に広く用いられているドロップアウト法と脳神経新生との関連を強調した。
論文 参考訳(メタデータ) (2023-04-06T14:51:20Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
スパイキングニューラルネットワーク(SNN)は、低レイテンシで低消費電力のニューロモルフィックハードウェアで使用するために、ディープラーニングコミュニティの注目を集めている。
本稿では,Spking Phasor Neural Networks(SPNN)を紹介する。
SPNNは複雑に評価されたディープニューラルネットワーク(DNN)に基づいており、スパイク時間による位相を表す。
論文 参考訳(メタデータ) (2022-04-01T15:06:15Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
スパイクニューラルネットワーク(SNN)は、少ないエネルギー消費で人工知能(AI)を実現することが期待されている。
SNNと深部強化学習(RL)を組み合わせることで、現実的な制御タスクに有望なエネルギー効率の方法を提供する。
論文 参考訳(メタデータ) (2022-01-21T16:42:11Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
生物学的脳シナプスによく似たSNN(spiking neural Network)は、低消費電力のために注目を集めている。
我々は、関係する性能を改善する汎用ハイブリッドニューラルネットワーク(hnn)を構築した。
論文 参考訳(メタデータ) (2021-02-21T12:03:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。