論文の概要: SLAM for Visually Impaired People: A Survey
- arxiv url: http://arxiv.org/abs/2212.04745v1
- Date: Fri, 9 Dec 2022 09:45:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 15:22:09.358268
- Title: SLAM for Visually Impaired People: A Survey
- Title(参考訳): 視覚障害者のためのSLAM: 調査
- Authors: Marziyeh Bamdad, Davide Scaramuzza, Alireza Darvishy
- Abstract要約: 我々は、視覚障害者と視覚障害者(VIB)の屋内および屋外ナビゲーションを支援するデジタル補助技術に重点を置いている。
提案手法について論じ,その長所と短所を示す。
私たちはこの領域で将来的な機会と課題を提示することで締めくくります。
- 参考スコア(独自算出の注目度): 44.552050530284355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent decades, several assistive technologies for visually impaired and
blind (VIB) people have been developed to improve their ability to navigate
independently and safely. At the same time, simultaneous localization and
mapping (SLAM) techniques have become sufficiently robust and efficient to be
adopted in the development of assistive technologies. In this paper, we first
report the results of an anonymous survey conducted with VIB people to
understand their experience and needs; we focus on digital assistive
technologies that help them with indoor and outdoor navigation. Then, we
present a literature review of assistive technologies based on SLAM. We discuss
proposed approaches and indicate their pros and cons. We conclude by presenting
future opportunities and challenges in this domain.
- Abstract(参考訳): 近年,視覚障害者と視覚障害者のための補助技術が開発され,自律的かつ安全にナビゲートする能力が向上している。
同時に、同時ローカライゼーションとマッピング(slam)の技術は、アシスト技術の開発において十分に堅牢で効率的なものとなった。
本稿では、まず、VIBの人々が経験とニーズを理解するために匿名調査を行った結果について報告する。
次に,slamに基づく支援技術に関する文献レビューを行う。
提案手法を議論し,その長所と短所を示す。
最後に、この領域における将来の機会と課題を提示します。
関連論文リスト
- WISDOM: An AI-powered framework for emerging research detection using weak signal analysis and advanced topic modeling [1.8434042562191815]
我々は、新たな研究テーマを検出するために、WISDOMと呼ばれる自動化人工知能対応フレームワークを提案する。
WISDOMは、高度なトピックモデリングと弱い信号分析を用いて、新たな研究テーマを検出する。
水中センシング技術の分野において,WISDOMによる研究の進展と動向の把握における性能の評価を行った。
論文 参考訳(メタデータ) (2024-09-09T18:08:08Z) - A Survey of Accessible Explainable Artificial Intelligence Research [0.0]
本稿では、説明可能な人工知能(XAI)のアクセシビリティに関する研究について、系統的な文献レビューを行う。
提案手法は,XAIとアクセシビリティーの交差点を捉えるために,いくつかの学術データベースを検索語で検索することを含む。
我々は、デジタル包摂とアクセシビリティを促進するために、XAI開発に障害コミュニティを含めることの重要性を強調している。
論文 参考訳(メタデータ) (2024-07-02T21:09:46Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
新型コロナウイルスの出現は、社会全体だけでなく、個人の生活にも大きく影響している。
マスクやソーシャルディスタンシングの義務、公共空間での定期消毒、スクリーニングアプリケーションの使用など、さまざまな予防策が世界中で導入されている。
これらの発展は、(i)視覚データの自動解析による予防対策の支援、(ii)生体認証などの既存の視覚ベースのサービスの正常な操作を容易にする、新しいコンピュータビジョン技術の必要性を喚起した。
論文 参考訳(メタデータ) (2022-11-07T17:20:39Z) - Beyond Visuals : Examining the Experiences of Geoscience Professionals
With Vision Disabilities in Accessing Data Visualizations [0.0]
この研究は、データ視覚化へのアクセスにおいて、STEMの規律(地質学)に盲目/視力障害のある専門家の経験を理解することを目的としている。
反射的セマンティック分析では、キャリアパスに影響を与える可視化の影響、研究のためのデータ探索ツールの欠如、同僚の作品へのアクセス障壁、そして可視化とアクセシビリティ研究のミスマッチしたペースが明らかにされた。
論文 参考訳(メタデータ) (2022-07-27T00:07:44Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
多くの研究が共感の利点を認識し、共感を会話システムに取り入れ始めた。
本稿では,5つのレビュー次元を用いて,急速に成長するこの分野について検討する。
論文 参考訳(メタデータ) (2022-05-09T05:19:48Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
オブジェクトのローカライゼーションと検出は、新しい世代のコンピュータビジョンシステムを開発する上で重要な役割を果たす。
本稿では,(1)古典的モデル,(2)既成の深層ネットワークの特徴表現を用いたアプローチ,(3)ディープラーニングのみに基づくアプローチ,(4)この分野で広く利用されている公開データセットと標準評価指標についてレビューする。
この分野における重要な課題、この分野の開発履歴、各カテゴリーの手法の利点/欠点、異なるカテゴリーの方法間の関係、弱い監督対象のローカリゼーションおよび検出方法の適用、およびこの研究分野の開発をさらに促進するための潜在的な将来の方向性について議論します。
論文 参考訳(メタデータ) (2021-04-16T06:44:50Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。