論文の概要: Two-stage Deep Denoising with Self-guided Noise Attention for Multimodal Medical Images
- arxiv url: http://arxiv.org/abs/2503.06827v1
- Date: Mon, 10 Mar 2025 01:26:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:07.653491
- Title: Two-stage Deep Denoising with Self-guided Noise Attention for Multimodal Medical Images
- Title(参考訳): マルチモーダル医用画像に対する自己誘導型ノイズアテンションを用いた2段階ディープDenoising
- Authors: S M A Sharif, Rizwan Ali Naqvi, Woong-Kee Loh,
- Abstract要約: 本研究は,AI駆動の2段階学習戦略により,現代の認知的手法の限界に対処する。
提案手法はノイズ画像から残音を推定する。
ノイズアテンション機構を組み込んで、推定残音と雑音入力を相関させ、コース・トゥ・リファインディングでノイズアテンションを行う。
- 参考スコア(独自算出の注目度): 8.643724626327852
- License:
- Abstract: Medical image denoising is considered among the most challenging vision tasks. Despite the real-world implications, existing denoising methods have notable drawbacks as they often generate visual artifacts when applied to heterogeneous medical images. This study addresses the limitation of the contemporary denoising methods with an artificial intelligence (AI)-driven two-stage learning strategy. The proposed method learns to estimate the residual noise from the noisy images. Later, it incorporates a novel noise attention mechanism to correlate estimated residual noise with noisy inputs to perform denoising in a course-to-refine manner. This study also proposes to leverage a multi-modal learning strategy to generalize the denoising among medical image modalities and multiple noise patterns for widespread applications. The practicability of the proposed method has been evaluated with dense experiments. The experimental results demonstrated that the proposed method achieved state-of-the-art performance by significantly outperforming the existing medical image denoising methods in quantitative and qualitative comparisons. Overall, it illustrates a performance gain of 7.64 in Peak Signal-to-Noise Ratio (PSNR), 0.1021 in Structural Similarity Index (SSIM), 0.80 in DeltaE ($\Delta E$), 0.1855 in Visual Information Fidelity Pixel-wise (VIFP), and 18.54 in Mean Squared Error (MSE) metrics.
- Abstract(参考訳): 医用画像の認知は最も困難な視力課題の1つである。
実世界の意味にもかかわらず、既存の denoising 法は、異種医療画像に適用した場合にしばしば視覚的アーティファクトを生成するため、顕著な欠点がある。
本研究は,AI駆動の2段階学習戦略により,現代の認知的手法の限界に対処する。
提案手法はノイズ画像から残音を推定する。
その後、ノイズアテンション機構を導入し、推定残音と雑音入力とを相関させ、コース・トゥ・リファインディングでデノナイジングを行う。
本研究は,医用画像モダリティと複数のノイズパターンを一般化するために,マルチモーダル学習戦略を活用することを提案する。
提案手法の実用性は高密度実験により評価されている。
実験の結果,提案手法は,既存の医用画像復号法を定量的および定性的比較で著しく上回る性能を示した。
全体としては、Peak Signal-to-Noise Ratio (PSNR), 0.1021 in Structure similarity Index (SSIM), 0.80 in DeltaE ($\Delta E$), 0.1855 in Visual Information Fidelity Pixel-wise (VIFP), 18.54 in Mean Squared Error (MSE) といったパフォーマンス向上を示している。
関連論文リスト
- Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume [12.077993066353294]
近距離スライスノイズ2ノイズ(NS-N2N)の自己監督型医用画像復号法を提案する。
NS-N2Nは、画像ボリューム自体の高品質な denoising を実現するために、1つの医療画像から得られるノイズの多い画像ボリュームのみを必要とする。
論文 参考訳(メタデータ) (2024-11-16T16:24:28Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising [6.314790045423454]
ノイズ2コントラストは、複数の計測画像コントラストからの情報を組み合わせて、デノナイジングモデルを訓練する。
画像のコントラストの独立雑音実現を利用して、ドメイン転送演算子と重畳することで、自己監督的損失を導出する。
実測データを用いた実験は,ノイズ2コントラストが他のマルチコントラスト画像に一般化されることを示唆している。
論文 参考訳(メタデータ) (2022-12-09T13:03:24Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
本稿では,スコアベース逆拡散サンプリングに基づく新しい復調法を提案する。
当ネットワークは, 人工膝関節のみを訓練し, 生体内MRIデータにも優れていた。
論文 参考訳(メタデータ) (2022-03-23T10:35:06Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - ISCL: Interdependent Self-Cooperative Learning for Unpaired Image
Denoising [3.796436257221662]
本論文では,ISCL (Interdependent Self-Cooperative Learning) を提案する。
ISCLは、周期的対向学習と自己監督的残差学習を組み合わせる。
そこで本研究では,isclが従来および現在のディープラーニングに基づく画像デノイジング法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-19T10:54:25Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Simは、非局所非線形方式で機能し、相関ノイズを抑制する教師なしのディープ・デノナイジング手法である。
Nosie2Simは、ノイズの多い低用量および光子計数CT画像から、教師付き学習方法と同じくらい効果的に、あるいはそれ以上に機能を回復する。
論文 参考訳(メタデータ) (2020-11-06T14:31:08Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。