論文の概要: Multi-view Graph Convolutional Networks with Differentiable Node
Selection
- arxiv url: http://arxiv.org/abs/2212.05124v1
- Date: Fri, 9 Dec 2022 21:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 17:14:20.376760
- Title: Multi-view Graph Convolutional Networks with Differentiable Node
Selection
- Title(参考訳): ノード選択可能な多視点グラフ畳み込みネットワーク
- Authors: Zhaoliang Chen, Lele Fu, Shunxin Xiao, Shiping Wang, Claudia Plant,
Wenzhong Guo
- Abstract要約: 差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
- 参考スコア(独自算出の注目度): 29.016371899997992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view data containing complementary and consensus information can
facilitate representation learning by exploiting the intact integration of
multi-view features. Because most objects in real world often have underlying
connections, organizing multi-view data as heterogeneous graphs is beneficial
to extracting latent information among different objects. Due to the powerful
capability to gather information of neighborhood nodes, in this paper, we apply
Graph Convolutional Network (GCN) to cope with heterogeneous-graph data
originating from multi-view data, which is still under-explored in the field of
GCN. In order to improve the quality of network topology and alleviate the
interference of noises yielded by graph fusion, some methods undertake sorting
operations before the graph convolution procedure. These GCN-based methods
generally sort and select the most confident neighborhood nodes for each
vertex, such as picking the top-k nodes according to pre-defined confidence
values. Nonetheless, this is problematic due to the non-differentiable sorting
operators and inflexible graph embedding learning, which may result in blocked
gradient computations and undesired performance. To cope with these issues, we
propose a joint framework dubbed Multi-view Graph Convolutional Network with
Differentiable Node Selection (MGCN-DNS), which is constituted of an adaptive
graph fusion layer, a graph learning module and a differentiable node selection
schema. MGCN-DNS accepts multi-channel graph-structural data as inputs and aims
to learn more robust graph fusion through a differentiable neural network. The
effectiveness of the proposed method is verified by rigorous comparisons with
considerable state-of-the-art approaches in terms of multi-view semi-supervised
classification tasks.
- Abstract(参考訳): 相補的およびコンセンサス情報を含むマルチビューデータは、マルチビュー機能の無傷な統合を利用して表現学習を容易にする。
現実世界のほとんどのオブジェクトは基盤となる接続を持っているため、異種グラフとしてマルチビューデータを整理することは、異なるオブジェクト間で潜在情報を抽出するのに有用である。
本稿では,近傍ノードの情報収集能力の強大さから,グラフ畳み込みネットワーク (gcn) を適用し,gcnの分野において未検討のままである多視点データから発生する不均一グラフデータに対処する。
ネットワークトポロジの品質を改善し,グラフ融合によって生じる雑音の干渉を軽減するため,グラフ畳み込み処理の前にソート処理を行う方法がある。
これらのGCNベースの手法は、一般に、予め定義された信頼値に従ってトップkノードを選択するなど、頂点ごとに最も自信のある近傍ノードをソートし、選択する。
それにもかかわらず、これは微分不能なソート演算子と柔軟性のないグラフ埋め込み学習のために問題であり、これはブロックされた勾配計算と望ましくないパフォーマンスをもたらす可能性がある。
これらの問題に対処するために,適応的なグラフ融合層,グラフ学習モジュール,および微分可能なノード選択スキーマで構成されるMGCN-DNSを用いた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目指している。
提案手法の有効性は,多視点半教師付き分類タスクにおける最先端手法と厳密な比較によって検証される。
関連論文リスト
- Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck [5.707725771108279]
本稿では,CGRL (Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck) を用いたノード分類手法を提案する。
提案手法は既存の最先端アルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-01T05:45:21Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learnable Graph Convolutional Network and Feature Fusion for Multi-view
Learning [30.74535386745822]
本稿では,Learningable Graph Convolutional Network and Feature Fusion (LGCN-FF) と呼ばれる統合ディープラーニングフレームワークを提案する。
特徴融合ネットワークと学習可能なグラフ畳み込みネットワークの2つのステージで構成されている。
提案したLGCN-FFは,多視点半教師付き分類において,様々な最先端手法よりも優れていることが検証された。
論文 参考訳(メタデータ) (2022-11-16T19:07:12Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
グラフニューラルネットワーク(GNN)は、複数のグラフベースの学習タスクで大きな成功を収めています。
入力グラフを近接情報と構造情報の両方を含む計算グラフに変換することに集中する。
構造と近接度を適応的に選択することで,様々な混合条件下での性能が向上することを示す。
論文 参考訳(メタデータ) (2021-06-11T19:18:34Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。