論文の概要: A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2212.05289v1
- Date: Sat, 10 Dec 2022 12:34:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 17:23:40.184731
- Title: A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークに基づく運動画像とSSVEPを用いたハイブリッド脳-コンピュータインタフェース
- Authors: Wenwei Luo and Wanguang Yin and Quanying Liu and Youzhi Qu
- Abstract要約: 本稿では,2ストリーム畳み込みニューラルネットワーク(TSCNN)を用いたハイブリッド脳-コンピュータインタフェースを提案する。
定常視覚誘発電位(SSVEP)と運動画像(MI)のパラダイムを組み合わせる。
TSCNNはトレーニングプロセスの2つのパラダイムにおいて、自動的に脳波の特徴を抽出する。
- 参考スコア(独自算出の注目度): 0.9176056742068814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The key to electroencephalography (EEG)-based brain-computer interface (BCI)
lies in neural decoding, and its accuracy can be improved by using hybrid BCI
paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually
require separate processing processes for EEG signals in each paradigm, which
greatly reduces the efficiency of EEG feature extraction and the
generalizability of the model. Here, we propose a two-stream convolutional
neural network (TSCNN) based hybrid brain-computer interface. It combines
steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms.
TSCNN automatically learns to extract EEG features in the two paradigms in the
training process, and improves the decoding accuracy by 25.4% compared with the
MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the
versatility of TSCNN is verified as it provides considerable performance in
both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios
(95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world
applications of EEG-based BCI systems.
- Abstract(参考訳): 脳波(EEG)に基づく脳-コンピュータインタフェース(BCI)の鍵は神経デコーディングにあり、その精度はハイブリッドBCIパラダイム(つまり複数のパラダイムを融合させることで向上することができる。
しかし、ハイブリッドBCIは通常、各パラダイムにおける脳波信号の別々の処理プロセスを必要とし、脳波特徴抽出の効率とモデルの一般化可能性を大幅に低下させる。
本稿では,2ストリーム畳み込みニューラルネットワーク(TSCNN)を用いたハイブリッド脳-コンピュータインタフェースを提案する。
定常視覚誘発電位(SSVEP)と運動画像(MI)のパラダイムを組み合わせる。
TSCNNは、トレーニングプロセスにおける2つのパラダイムにおける脳波の特徴を自動的に抽出し、MIモードと比較してデコード精度を25.4%改善し、テストデータのSSVEPモードと比較して2.6%改善する。
さらに、TSCNNの汎用性はシングルモード(MIは70.2%、SSVEPは93.0%)とハイブリッドモードシナリオ(MI-SSVEPハイブリッドは95.6%)の両方でかなりの性能を提供するとして検証されている。
我々はEEGベースのBCIシステムの現実的な応用を促進する。
関連論文リスト
- Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
デュアルブランチ時間スペクトル空間変換器(Dual-TSST)を用いた新しいデコードアーキテクチャネットワークを提案する。
提案するDual-TSSTは様々なタスクにおいて優れており,平均精度80.67%の脳波分類性能が期待できる。
本研究は,高性能脳波デコーディングへの新たなアプローチを提供するとともに,将来のCNN-Transformerベースのアプリケーションにも大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-05T05:08:43Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
本稿では,3次元畳み込みニューラルネットワーク(CNN)と長期記憶ネットワーク(LSTM)を組み合わせて運動画像(MI)信号を分類するモデルを提案する。
実験の結果、このモデルは、BCIコンペティションIVデータセット2aの分類精度92.7%、F1スコア0.91に達した。
このモデルにより、ユーザの運動像意図の分類精度が大幅に向上し、自律走行車や医療リハビリテーションといった新興分野における脳-コンピュータインタフェースの応用可能性が改善された。
論文 参考訳(メタデータ) (2023-12-20T03:38:24Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
我々は、畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCNN)を統合するハイブリッドネットワークであるEEG-BBNetを提案する。
我々のモデルは、イベント関連電位(ERP)タスクにおけるすべてのベースラインを、セッション内データを用いて平均99.26%の正確な認識率で上回ります。
論文 参考訳(メタデータ) (2022-08-17T10:18:22Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces [15.07343602952606]
本稿では、トレーニング可能なパラメータをほとんど必要とせず、優れた精度を実現する新しい時間畳み込みネットワーク(TCN)であるEEG-TCNetを提案する。
メモリフットプリントが低く、推論の計算量も少ないため、エッジのリソース制限されたデバイスの組み込み分類に適している。
論文 参考訳(メタデータ) (2020-05-31T21:45:45Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
本稿では,難しい場合であっても,ハイブリッドベースラインに近い性能を示すエンドツーエンドアプローチについて論じる。
CTC-Attention と RNN-Transducer のアプローチと RNN と Transformer のアーキテクチャを比較し,解析する。
RNN-Transducerをベースとしたベストエンド・ツー・エンドモデルでは、ビームサーチの改善とともに、LF-MMI TDNN-F CHiME-6 Challengeのベースラインよりも品質が3.8%向上した。
論文 参考訳(メタデータ) (2020-04-22T19:08:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。