論文の概要: EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces
- arxiv url: http://arxiv.org/abs/2006.00622v1
- Date: Sun, 31 May 2020 21:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 12:43:10.400960
- Title: EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces
- Title(参考訳): EEG-TCNet: 埋め込み型運動画像脳機械インタフェースのための正確な時間畳み込みネットワーク
- Authors: Thorir Mar Ingolfsson, Michael Hersche, Xiaying Wang, Nobuaki
Kobayashi, Lukas Cavigelli, Luca Benini
- Abstract要約: 本稿では、トレーニング可能なパラメータをほとんど必要とせず、優れた精度を実現する新しい時間畳み込みネットワーク(TCN)であるEEG-TCNetを提案する。
メモリフットプリントが低く、推論の計算量も少ないため、エッジのリソース制限されたデバイスの組み込み分類に適している。
- 参考スコア(独自算出の注目度): 15.07343602952606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning (DL) has contributed significantly to the
improvement of motor-imagery brain-machine interfaces (MI-BMIs) based on
electroencephalography(EEG). While achieving high classification accuracy, DL
models have also grown in size, requiring a vast amount of memory and
computational resources. This poses a major challenge to an embedded BMI
solution that guarantees user privacy, reduced latency, and low power
consumption by processing the data locally. In this paper, we propose
EEG-TCNet, a novel temporal convolutional network (TCN) that achieves
outstanding accuracy while requiring few trainable parameters. Its low memory
footprint and low computational complexity for inference make it suitable for
embedded classification on resource-limited devices at the edge. Experimental
results on the BCI Competition IV-2a dataset show that EEG-TCNet achieves
77.35% classification accuracy in 4-class MI. By finding the optimal network
hyperparameters per subject, we further improve the accuracy to 83.84%.
Finally, we demonstrate the versatility of EEG-TCNet on the Mother of All BCI
Benchmarks (MOABB), a large scale test benchmark containing 12 different EEG
datasets with MI experiments. The results indicate that EEG-TCNet successfully
generalizes beyond one single dataset, outperforming the current
state-of-the-art (SoA) on MOABB by a meta-effect of 0.25.
- Abstract(参考訳): 近年、深層学習(DL)は脳波(EEG)に基づく運動画像脳-機械インタフェース(MI-BMI)の改善に大きく貢献している。
高い分類精度を達成する一方で、DLモデルのサイズも大きくなり、大量のメモリと計算資源が必要になった。
これは、データのローカル処理によるユーザのプライバシ、レイテンシ低減、低消費電力を保証する組み込みBMIソリューションに対して、大きな課題となる。
本稿では、トレーニング可能なパラメータをほとんど必要とせず、優れた精度を実現する新しい時間畳み込みネットワーク(TCN)であるEEG-TCNetを提案する。
メモリフットプリントの低さと推論の計算複雑性の低さは、エッジのリソース制限されたデバイスへの組み込み分類に適している。
BCIコンペティションIV-2aデータセットの実験結果は、EEG-TCNetが4クラスMIで77.35%の分類精度を達成したことを示している。
被験者毎の最適なネットワークハイパーパラメータを見つけることで、精度をさらに83.84%向上させる。
最後に、mi実験で12の異なるeegデータセットを含む大規模テストベンチマークである、すべてのbciベンチマーク(moabb)の母体上で、eeg-tcnetの汎用性を示す。
その結果、eeg-tcnetは単一のデータセット以上の一般化に成功し、moabbの現在の最先端(soa)を0.25のメタ効果で上回った。
関連論文リスト
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDenseは、効率よく正確な密度予測タスクのために設計された一般化されたバイナリニューラルネットワーク(BNN)である。
BiDenseは2つの重要なテクニックを取り入れている: 分散適応バイナリー (DAB) とチャネル適応完全精度バイパス (CFB) である。
論文 参考訳(メタデータ) (2024-11-15T16:46:04Z) - EEG_RL-Net: Enhancing EEG MI Classification through Reinforcement Learning-Optimised Graph Neural Networks [7.9035081192335115]
本稿では、EEG_GLT-NetからトレーニングされたEEG GCNブロックを隣接行列密度13.39%で組み込んだEEG_GLT-Netフレームワークの強化であるEEG_RL-Netを提案する。
EEG_RL-Netモデルは例外的な分類性能を示し、25ミリ秒以内の20人の被験者の平均精度は96.40%である。
論文 参考訳(メタデータ) (2024-04-26T13:09:50Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network [0.9176056742068814]
本稿では,2ストリーム畳み込みニューラルネットワーク(TSCNN)を用いたハイブリッド脳-コンピュータインタフェースを提案する。
定常視覚誘発電位(SSVEP)と運動画像(MI)のパラダイムを組み合わせる。
TSCNNはトレーニングプロセスの2つのパラダイムにおいて、自動的に脳波の特徴を抽出する。
論文 参考訳(メタデータ) (2022-12-10T12:34:36Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
Implementation for Edge Motor-Imagery Brain--Machine Interfaces [16.381467082472515]
運動画像脳-機械インタフェース(MI-BMI)は、人間の脳と機械間の直接的かつアクセス可能なコミュニケーションをプロミットする。
脳波信号を分類するためのディープラーニングモデルが登場した。
これらのモデルは、メモリと計算要求のため、エッジデバイスの限界を超えることが多い。
論文 参考訳(メタデータ) (2020-04-24T12:29:03Z) - An Accurate EEGNet-based Motor-Imagery Brain-Computer Interface for
Low-Power Edge Computing [13.266626571886354]
本稿では,MI-BCI(MI-BCI)の精度と堅牢性を示す。
EEGNetに基づく新しいモデルでは、低消費電力マイクロコントローラユニット(MCU)のメモリフットプリントと計算資源の要件が一致している。
スケールされたモデルは、最小モデルを操作するために101msと4.28mJを消費する商用のCortex-M4F MCUにデプロイされ、中型モデルでは44msと18.1mJのCortex-M7にデプロイされる。
論文 参考訳(メタデータ) (2020-03-31T19:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。