論文の概要: Mitigating Adversarial Gray-Box Attacks Against Phishing Detectors
- arxiv url: http://arxiv.org/abs/2212.05380v1
- Date: Sun, 11 Dec 2022 00:25:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 18:06:28.069887
- Title: Mitigating Adversarial Gray-Box Attacks Against Phishing Detectors
- Title(参考訳): フィッシング検出器に対する灰色のボックス攻撃の緩和
- Authors: Giovanni Apruzzese and V.S. Subrahmanian
- Abstract要約: 本稿では,PDに対するGray-Box攻撃のセットを提案する。
以上の結果から,これらの攻撃は既存のいくつかのPDの有効性を著しく低下させることが判明した。
次に、元の特徴集合を新しい特徴集合に反復的にマッピングする操作連鎖の概念を提案し、「予測操作連鎖」アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 10.589772769069592
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although machine learning based algorithms have been extensively used for
detecting phishing websites, there has been relatively little work on how
adversaries may attack such "phishing detectors" (PDs for short). In this
paper, we propose a set of Gray-Box attacks on PDs that an adversary may use
which vary depending on the knowledge that he has about the PD. We show that
these attacks severely degrade the effectiveness of several existing PDs. We
then propose the concept of operation chains that iteratively map an original
set of features to a new set of features and develop the "Protective Operation
Chain" (POC for short) algorithm. POC leverages the combination of random
feature selection and feature mappings in order to increase the attacker's
uncertainty about the target PD. Using 3 existing publicly available datasets
plus a fourth that we have created and will release upon the publication of
this paper, we show that POC is more robust to these attacks than past
competing work, while preserving predictive performance when no adversarial
attacks are present. Moreover, POC is robust to attacks on 13 different
classifiers, not just one. These results are shown to be statistically
significant at the p < 0.001 level.
- Abstract(参考訳): 機械学習ベースのアルゴリズムは、フィッシングwebサイトの検出に広く使われているが、このような“フィッシング検出器”(pds)を敵が攻撃する方法については、比較的少ない。
本稿では,pdsに対するグレイボックス攻撃のセットを提案する。その攻撃は,pdに関する知識によって異なる可能性がある。
これらの攻撃はいくつかの既存のPDの有効性を著しく低下させることを示した。
そこで我々は,元の特徴集合を新しい特徴集合に反復的にマッピングする操作連鎖の概念を提案し,そのアルゴリズム「予測操作連鎖(POC)」を開発した。
POCは、ターゲットPDに対する攻撃者の不確実性を高めるために、ランダムな特徴選択と特徴マッピングの組み合わせを利用する。
既存の3つの公開データセットと、私たちが作成した4番目のデータセットをこの論文の公開時に公開することにより、POCは過去の競合する作業よりも、これらの攻撃に対して堅牢であると同時に、敵の攻撃が存在しない場合に予測性能を保っていることを示す。
さらに、POCは1つだけでなく13の異なる分類器に対する攻撃に対して堅牢である。
これらの結果はp < 0.001 レベルで統計的に有意であることが示されている。
関連論文リスト
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
PRofiling Adversarial aTacks (PRAT) の新たな問題点について紹介する。
敵対的な例として、PRATの目的は、それを生成するのに使用される攻撃を特定することである。
AIDを用いてPRATの目的のための新しいフレームワークを考案する。
論文 参考訳(メタデータ) (2023-09-20T07:42:51Z) - Ensemble-based Blackbox Attacks on Dense Prediction [16.267479602370543]
慎重に設計されたアンサンブルは、多くの犠牲者モデルに対して効果的な攻撃を発生させることができることを示す。
特に,個々のモデルに対する重み付けの正規化が,攻撃の成功に重要な役割を担っていることを示す。
提案手法は同時に複数のブラックボックス検出とセグメンテーションモデルを騙すことができる単一摂動を生成することができる。
論文 参考訳(メタデータ) (2023-03-25T00:08:03Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - Using Anomaly Feature Vectors for Detecting, Classifying and Warning of
Outlier Adversarial Examples [4.096598295525345]
分類ニューラルネットワークに提示される敵入力を検出し,分類し,警告するシステムであるDeClaWについて述べる。
予備的な発見は、AFVがCIFAR-10データセット上で93%近い精度で、いくつかの種類の敵攻撃を区別するのに役立つことを示唆している。
論文 参考訳(メタデータ) (2021-07-01T16:00:09Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
本研究の目的は、目視攻撃と目視攻撃の両方に対して一定の範囲内で堅牢な防衛モデルを設計することである。
提案するディフェンスモデルは,MNIST,CIFAR-10,Tiny ImageNetデータベース上で評価される。
提案アルゴリズムは攻撃非依存であり,攻撃アルゴリズムの知識を必要としない。
論文 参考訳(メタデータ) (2020-10-25T23:14:26Z) - Detection of Iterative Adversarial Attacks via Counter Attack [4.549831511476249]
ディープニューラルネットワーク(DNN)は、非構造化データを処理する強力なツールであることが証明されている。
画像のような高次元データの場合、それらは本質的に敵対的な攻撃に対して脆弱である。
本研究では、CW攻撃が検出器自体として使用できるという数学的証明を概説する。
論文 参考訳(メタデータ) (2020-09-23T21:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。