Manifestation of the coupling phase in microwave cavity magnonics
- URL: http://arxiv.org/abs/2212.05389v1
- Date: Sun, 11 Dec 2022 02:22:18 GMT
- Title: Manifestation of the coupling phase in microwave cavity magnonics
- Authors: Alan Gardin, Jeremy Bourhill, Vincent Vlaminck, Christian Person,
Christophe Fumeaux, Vincent Castel, Giuseppe C. Tettamanzi
- Abstract summary: We study the interaction between microwave photons and magnons.
We consider two such systems, each differing by the sign of one of the magnon/photon coupling strengths.
This simple difference, originating from the various coupling phases in the system, is shown to preserve, or destroy, two potential applications of hybrid photon/magnon systems.
- Score: 0.2493740042317776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interaction between microwave photons and magnons is well understood and
originates from the Zeeman coupling between spins and a magnetic field.
Interestingly, the magnon/photon interaction is accompanied by a phase factor
which can usually be neglected. However, under the rotating wave approximation,
if two magnon modes simultaneously couple with two cavity resonances, this
phase cannot be ignored as it changes the physics of the system. We consider
two such systems, each differing by the sign of one of the magnon/photon
coupling strengths. This simple difference, originating from the various
coupling phases in the system, is shown to preserve, or destroy, two potential
applications of hybrid photon/magnon systems, namely dark mode memories and
cavity-mediated coupling. The observable consequences of the coupling phase in
this system is akin to the manifestation of a discrete Pancharatnam-Berry
phase, which may be useful for quantum information processing.
Related papers
- Engineering synthetic gauge fields through the coupling phases in cavity magnonics [0.06022769903412459]
cavity magnonics is a promising platform for quantum transducers and quantum memories.
In "loop-coupled" systems, where there are at least as many couplings as modes, the coupling phases become relevant for the physics.
We present experimental evidence of the existence of such coupling phases by considering two spheres made of Yttrium-Iron-Garnet and two different re-entrant cavities.
arXiv Detail & Related papers (2023-12-08T09:25:26Z) - Distant entanglement via photon hopping in a coupled magnomechanical
system [0.0]
We find significant bipartite entanglement between indirectly coupled subsystems in coupled microwave cavities.
A single photon hopping parameter significantly affects both the degree as well as the transfer of quantum entanglement between various bipartitions.
arXiv Detail & Related papers (2023-07-18T16:43:43Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Phases, instabilities and excitations in a two-component lattice model
with photon-mediated interactions [0.12233362977312942]
We study a two-component spin Bose-Hubbard system with cavity-mediated interactions.
The interplay of different energy scales yields a rich phase diagram with superfluid and insulating phases.
The studied lattice model can be readily realized in cold-atom experiments with optical cavities.
arXiv Detail & Related papers (2022-10-20T14:45:01Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Dissipative Josephson effect in coupled nanolasers [0.0]
We study a setup where dissipative interactions do amplify a photonic Josephson current.
We show that the Josephson photocurrent can be used to measure optical phase differences.
In the quantum limit, the accuracy of the two nanolaser interferometer grows with the square of the photon number.
arXiv Detail & Related papers (2020-11-06T10:21:33Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.