Estimator: An Effective and Scalable Framework for Transportation Mode
Classification over Trajectories
- URL: http://arxiv.org/abs/2212.05502v1
- Date: Sun, 11 Dec 2022 13:32:49 GMT
- Title: Estimator: An Effective and Scalable Framework for Transportation Mode
Classification over Trajectories
- Authors: Danlei Hu, Ziquan Fang, Hanxi Fang, Tianyi Li, Chunhui Shen, Lu Chen,
Yunjun Gao
- Abstract summary: We propose an effective and scalable framework for transportation mode classification over GPS trajectories, abbreviated Estimator.
Estimator partitions the entire traffic space into disjointed spatial regions according to traffic conditions, which enhances the scalability significantly.
We show that Estimator achieves superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which outperforms state-of-the-arts learning-based methods.
- Score: 22.704053034976784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transportation mode classification, the process of predicting the class
labels of moving objects transportation modes, has been widely applied to a
variety of real world applications, such as traffic management, urban
computing, and behavior study. However, existing studies of transportation mode
classification typically extract the explicit features of trajectory data but
fail to capture the implicit features that affect the classification
performance. In addition, most of the existing studies also prefer to apply
RNN-based models to embed trajectories, which is only suitable for classifying
small-scale data. To tackle the above challenges, we propose an effective and
scalable framework for transportation mode classification over GPS
trajectories, abbreviated Estimator. Estimator is established on a developed
CNN-TCN architecture, which is capable of leveraging the spatial and temporal
hidden features of trajectories to achieve high effectiveness and efficiency.
Estimator partitions the entire traffic space into disjointed spatial regions
according to traffic conditions, which enhances the scalability significantly
and thus enables parallel transportation classification. Extensive experiments
using eight public real-life datasets offer evidence that Estimator i) achieves
superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which
outperforms state-of-the-arts substantially; ii) exhibits prominent model
efficiency, and obtains 7-40x speedups up over state-of-the-arts learning-based
methods; and iii) shows high model scalability and robustness that enables
large-scale classification analytics.
Related papers
- Towards a Transformer-Based Pre-trained Model for IoT Traffic Classification [0.6060461053918144]
State-of-the-art classification methods are based on Deep Learning.
In real-life situations, where there is a scarce amount of IoT traffic data, the models would not perform so well.
We propose IoT Traffic Classification Transformer (ITCT), which is pre-trained on a large labeled transformer-based IoT traffic dataset.
Experiments demonstrated that ITCT model significantly outperforms existing models, achieving an overall accuracy of 82%.
arXiv Detail & Related papers (2024-07-26T19:13:11Z) - Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
This paper studies the efficient transferability assessment of pre-trained object detectors.
We build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors.
Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability.
arXiv Detail & Related papers (2024-03-14T14:23:23Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
This paper proposes an efficient trajectory prediction model that is not dependent on traffic maps.
By comprehensively utilizing attention mechanism, LSTM, graph convolution network and temporal transformer, our model is able to learn rich dynamic and interaction information of all agents.
Our model achieves the highest performance when comparing with existing map-free methods and also exceeds most map-based state-of-the-art methods on the Argoverse dataset.
arXiv Detail & Related papers (2023-07-19T08:36:31Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - TraClets: Harnessing the power of computer vision for trajectory
classification [0.9405458160620532]
This research is presented that exploits image representations of trajectories, called TraClets, in order to classify trajectories in an intuitive humans way.
Several real-world datasets are used to evaluate the proposed approach and compare its classification performance to other state-of-the-art trajectory classification algorithms.
arXiv Detail & Related papers (2022-05-27T10:28:05Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Vehicle Behavior Prediction and Generalization Using Imbalanced Learning
Techniques [1.3381749415517017]
This paper proposes an interaction-aware prediction model consisting of an LSTM autoencoder and SVM classifier.
Evaluations show that the method enhances model performance, resulting in improved classification accuracy.
arXiv Detail & Related papers (2021-09-22T11:21:20Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
We propose an unsupervised neural approach for mobility behavior clustering, called Deep Embedded TrajEctor ClusTering network (DETECT)
DETECT operates in three parts: first it transforms the trajectories by summarizing their critical parts and augmenting them with context derived from their geographical locality.
In the second part, it learns a powerful representation of trajectories in the latent space of behaviors, thus enabling a clustering function (such as $k$means) to be applied.
arXiv Detail & Related papers (2020-03-03T06:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.