論文の概要: Efficient Relation-aware Neighborhood Aggregation in Graph Neural
Networks via Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2212.05581v3
- Date: Mon, 29 May 2023 13:10:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 02:46:39.471750
- Title: Efficient Relation-aware Neighborhood Aggregation in Graph Neural
Networks via Tensor Decomposition
- Title(参考訳): テンソル分解によるグラフニューラルネットワークの効率的な関係認識近傍集約
- Authors: Peyman Baghershahi, Reshad Hosseini, Hadi Moradi
- Abstract要約: 本稿では,テンソル分解を集約関数に組み込んだ一般知識グラフを提案する。
我々のモデルでは、近傍の実体は低ランクテンソルの射影行列を用いて変換される。
本稿では,CP分解を用いたコアテンソルの低ランク推定手法を提案する。
- 参考スコア(独自算出の注目度): 6.596002578395149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many Graph Neural Networks (GNNs) are proposed for Knowledge Graph Embedding
(KGE). However, lots of these methods neglect the importance of the information
of relations and combine it with the information of entities inefficiently,
leading to low expressiveness. To address this issue, we introduce a general
knowledge graph encoder incorporating tensor decomposition in the aggregation
function of Relational Graph Convolutional Network (R-GCN). In our model,
neighbor entities are transformed using projection matrices of a low-rank
tensor which are defined by relation types to benefit from multi-task learning
and produce expressive relation-aware representations. Besides, we propose a
low-rank estimation of the core tensor using CP decomposition to compress and
regularize our model. We use a training method inspired by contrastive
learning, which relieves the training limitation of the 1-N method on huge
graphs. We achieve favorably competitive results on FB15k-237 and WN18RR with
embeddings in comparably lower dimensions.
- Abstract(参考訳): 多くのグラフニューラルネットワーク(GNN)が知識グラフ埋め込み(KGE)のために提案されている。
しかし、これらの手法の多くは関係情報の重要性を無視し、非効率な実体情報と組み合わせ、表現力の低下につながっている。
本稿では,関係グラフ畳み込みネットワーク(R-GCN)の集約関数にテンソル分解を組み込んだ一般知識グラフエンコーダを提案する。
本モデルでは,マルチタスク学習の恩恵を受けるために関係型によって定義される低ランクテンソルの射影行列を用いて近傍のエンティティを変換し,表現的関係認識表現を生成する。
さらに、CP分解を用いたコアテンソルの低ランク推定を行い、モデルを圧縮・正規化する。
コントラスト学習にインスパイアされたトレーニング手法を用いて,大規模グラフ上での1-N法のトレーニング制限を緩和する。
我々は,FB15k-237およびWN18RRにおいて,比較的低次元の埋め込みによる良好な競争結果を得た。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Tensor-view Topological Graph Neural Network [16.433092191206534]
グラフニューラルネットワーク(GNN)は最近、グラフ学習において注目を集めている。
既存のGNNは、各ノード周辺の非常に限られた地区からのローカル情報のみを使用する。
本稿では,単純かつ効果的な深層学習のクラスであるTopological Graph Neural Network (TTG-NN)を提案する。
実データ実験により,提案したTTG-NNは,グラフベンチマークにおいて20の最先端手法より優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:55:01Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Bridging Graph Neural Networks and Statistical Relational Learning:
Relational One-Class GCN [0.0]
リレーショナルデータに対するグラフ畳み込みネットワーク(GCN)の学習の問題を検討する。
本手法は,関係密度推定手法を用いて二次グラフを構築する。
論文 参考訳(メタデータ) (2021-02-13T21:34:44Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。