論文の概要: Emotion Detection through Body Gesture and Face
- arxiv url: http://arxiv.org/abs/2407.09913v1
- Date: Sat, 13 Jul 2024 15:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 20:18:01.886659
- Title: Emotion Detection through Body Gesture and Face
- Title(参考訳): 身体のジェスチャーと顔による感情検出
- Authors: Haoyang Liu,
- Abstract要約: このプロジェクトは、非顔の手がかり、特に手、身体のジェスチャー、ジェスチャーに焦点を当てることによる感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The project leverages advanced machine and deep learning techniques to address the challenge of emotion recognition by focusing on non-facial cues, specifically hands, body gestures, and gestures. Traditional emotion recognition systems mainly rely on facial expression analysis and often ignore the rich emotional information conveyed through body language. To bridge this gap, this method leverages the Aff-Wild2 and DFEW databases to train and evaluate a model capable of recognizing seven basic emotions (angry, disgust, fear, happiness, sadness, surprise, and neutral) and estimating valence and continuous scales wakeup descriptor. Leverage OpenPose for pose estimation to extract detailed body posture and posture features from images and videos. These features serve as input to state-of-the-art neural network architectures, including ResNet, and ANN for emotion classification, and fully connected layers for valence arousal regression analysis. This bifurcation strategy can solve classification and regression problems in the field of emotion recognition. The project aims to contribute to the field of affective computing by enhancing the ability of machines to interpret and respond to human emotions in a more comprehensive and nuanced way. By integrating multimodal data and cutting-edge computational models, I aspire to develop a system that not only enriches human-computer interaction but also has potential applications in areas as diverse as mental health support, educational technology, and autonomous vehicle systems.
- Abstract(参考訳): このプロジェクトは、高度な機械学習と深層学習技術を活用し、非顔の手がかり、特に手、身振り、ジェスチャーに焦点を当てて、感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このギャップを埋めるために、この手法はAff-Wild2データベースとDFEWデータベースを利用して、7つの基本的な感情(怒り、嫌悪感、恐怖、幸福、悲しみ、驚き、中立)を認識できるモデルを訓練し、評価する。
ポーズ推定のためのOpenPoseを活用して、画像やビデオから詳細な身体姿勢と姿勢の特徴を抽出する。
これらの機能は、感情分類のためのResNetやANNなど、最先端のニューラルネットワークアーキテクチャへの入力として機能する。
この分岐戦略は、感情認識の分野における分類と回帰問題を解くことができる。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
マルチモーダルデータと最先端の計算モデルを統合することで、人間とコンピュータの相互作用を豊かにするだけでなく、メンタルヘルスサポート、教育技術、自動運転車システムといった分野にも潜在的な応用を期待する。
関連論文リスト
- Leveraging Previous Facial Action Units Knowledge for Emotion
Recognition on Faces [2.4158349218144393]
本稿では,感情認識のための顔行動単位(AU)認識手法を提案する。
この認識はFACS(Facial Action Coding System)に基づいており、機械学習システムによって計算される。
論文 参考訳(メタデータ) (2023-11-20T18:14:53Z) - Facial Expression Recognition using Squeeze and Excitation-powered Swin
Transformers [0.0]
本研究では,Swin Vision Transformers (SwinT) とSwin Vision Transformers (SE) を用いて,視覚タスクに対処するフレームワークを提案する。
我々の焦点は、最小限のデータを使って顔の感情を認識できるSwinTアーキテクチャに基づく効率的なFERモデルを作ることであった。
我々は、ハイブリッドデータセットでモデルをトレーニングし、そのパフォーマンスをAffectNetデータセットで評価し、F1スコア0.5420を達成しました。
論文 参考訳(メタデータ) (2023-01-26T02:29:17Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Multi-Cue Adaptive Emotion Recognition Network [4.570705738465714]
適応型マルチキューに基づく感情認識のための新しい深層学習手法を提案する。
提案手法とCAER-Sデータセットの最先端手法を比較した。
論文 参考訳(メタデータ) (2021-11-03T15:08:55Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
画像から感情を予測するために,SOLVER(Scene-Object Interrelated Visual Emotion Reasoning Network)を提案する。
異なるオブジェクト間の感情関係を掘り下げるために、まずセマンティックな概念と視覚的特徴に基づいて感情グラフを構築します。
また、シーンとオブジェクトを統合するScene-Object Fusion Moduleを設計し、シーンの特徴を利用して、提案したシーンベースのアテンションメカニズムでオブジェクトの特徴の融合プロセスを導出する。
論文 参考訳(メタデータ) (2021-10-24T02:41:41Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
本稿では,刺激選択,特徴抽出,感情予測の3段階からなる刺激認識型視覚感情分析(VEA)手法を提案する。
我々の知る限りでは、エンド・ツー・エンドのネットワークでVEAに刺激選択プロセスを導入するのは初めてです。
実験により、提案手法は、4つの公的な視覚的感情データセットに対する最先端のアプローチよりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-09-04T08:14:52Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
本稿では,反復的手順で学習した畳み込みニューラルネットワーク(CNN)アーキテクチャに依存する逆学習フレームワークを提案する。
その結果、提案手法は、感情認識の精度を保ち、顔認証の劣化を抑えるための畳み込み変換を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-16T22:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。