Photon-number moments and cumulants of Gaussian states
- URL: http://arxiv.org/abs/2212.06067v6
- Date: Tue, 05 Nov 2024 02:38:44 GMT
- Title: Photon-number moments and cumulants of Gaussian states
- Authors: Yanic Cardin, Nicolás Quesada,
- Abstract summary: We develop expressions for the moments and cumulants of Gaussian states when measured in the photon-number basis.
We show that the calculation of photon-number moments and cumulants are #P-hard.
- Score: 0.0
- License:
- Abstract: We develop closed-form expressions for the moments and cumulants of Gaussian states when measured in the photon-number basis. We express the photon-number moments of a Gaussian state in terms of the loop Hafnian, a function that when applied to a $(0,1)$-matrix representing the adjacency of a graph, counts the number of its perfect matchings. Similarly, we express the photon-number cumulants in terms of the Montrealer, a newly introduced matrix function that when applied to a $(0,1)$-matrix counts the number of Hamiltonian cycles of that graph. Based on these graph-theoretic connections, we show that the calculation of photon-number moments and cumulants are #P-hard. Moreover, we provide an exponential time algorithm to calculate Montrealers (and thus cumulants), matching well-known results for Hafnians. We then demonstrate that when a uniformly lossy interferometer is fed in every input with identical single-mode Gaussian states with zero displacement, all the odd-order cumulants but the first one are zero. Finally, we employ the expressions we derive to study the distribution of cumulants up to the fourth order for different input states in a Gaussian boson sampling setup where $K$ identical states are fed into an $\ell$-mode interferometer. We analyze the dependence of the cumulants as a function of the type of input state, squeezed, lossy squeezed, squashed, or thermal, and as a function of the number of non-vacuum inputs. We find that thermal states perform much worse than other classical states, such as squashed states, at mimicking the photon-number cumulants of lossy or lossless squeezed states.
Related papers
- Efficient Hamiltonian, structure and trace distance learning of Gaussian states [2.949446809950691]
We show that it is possible to learn the underlying interaction graph in a similar setting and sample complexity.
Our results put the status of the quantum Hamiltonian learning problem for continuous variable systems in a much more advanced state.
arXiv Detail & Related papers (2024-11-05T15:07:20Z) - Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Multi-mode Gaussian State Analysis with one Bounded Photon Counter [0.0]
What properties of a multi-mode Gaussian state are determined by the signal from one detector that measures total number photons up to some bound?
We find that if the Gaussian state occupies $S$ modes and the probabilities of $n$ photons for all $nleq 8S$ are known, then we can determine the spectrum of the Gaussian covariance matrix.
Nothing more can be learned, even if all photon-number probabilities are known.
arXiv Detail & Related papers (2024-04-13T10:44:33Z) - Average Rényi Entanglement Entropy in Gaussian Boson Sampling [17.695669245980124]
We study the modal entanglement of the output states in a framework for quantum computing.
We derive formulas for $alpha = 1$, and, more generally, for all integers $alpha$ in the limit of modes and for input states that are composed of single-mode-squeezed-vacuum state with equal squeezing strength.
arXiv Detail & Related papers (2024-03-27T18:00:01Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Gaussian Quantum Illumination via Monotone Metrics [6.626330159001871]
We show that two-mode squeezed vacuum (TMSV) states are the optimal probe among pure Gaussian states with fixed signal mean photon number.
Third, we show that it is of utmost importance to prepare an efficient idler memory to beat coherent states and provide analytic bounds on the idler memory transmittivity in terms of signal power, background noise, and idler memory noise.
arXiv Detail & Related papers (2023-02-15T07:13:04Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - A Partially Random Trotter Algorithm for Quantum Hamiltonian Simulations [31.761854762513337]
Given the Hamiltonian, the evaluation of unitary operators has been at the heart of many quantum algorithms.
Motivated by existing deterministic and random methods, we present a hybrid approach.
arXiv Detail & Related papers (2021-09-16T13:53:12Z) - Quantum impurity models using superpositions of fermionic Gaussian
states: Practical methods and applications [0.0]
We present a practical approach for performing a variational calculation based on non-orthogonal fermionic Gaussian states.
Our method is based on approximate imaginary-time equations of motion that decouple the dynamics of each state forming the ansatz.
We also study the screening cloud of the two-channel Kondo model, a problem difficult to tackle using existing numerical tools.
arXiv Detail & Related papers (2021-05-03T18:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.