Siamese Neural Networks for Skin Cancer Classification and New Class
Detection using Clinical and Dermoscopic Image Datasets
- URL: http://arxiv.org/abs/2212.06130v1
- Date: Mon, 12 Dec 2022 18:58:43 GMT
- Title: Siamese Neural Networks for Skin Cancer Classification and New Class
Detection using Clinical and Dermoscopic Image Datasets
- Authors: Michael Luke Battle, Amir Atapour-Abarghouei, Andrew Stephen McGough
- Abstract summary: We evaluate Siamese Neural Networks (SNNs) on both dermoscopic and clinical images of skin lesions.
SNNs allow us to classify images of skin lesions, but also allow us to identify those images which are different from the trained classes.
We obtain top-1 classification accuracy levels of 74.33% and 85.61% on clinical and dermoscopic datasets.
- Score: 4.83420384410068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin cancer is the most common malignancy in the world. Automated skin cancer
detection would significantly improve early detection rates and prevent deaths.
To help with this aim, a number of datasets have been released which can be
used to train Deep Learning systems - these have produced impressive results
for classification. However, this only works for the classes they are trained
on whilst they are incapable of identifying skin lesions from previously unseen
classes, making them unconducive for clinical use. We could look to massively
increase the datasets by including all possible skin lesions, though this would
always leave out some classes. Instead, we evaluate Siamese Neural Networks
(SNNs), which not only allows us to classify images of skin lesions, but also
allow us to identify those images which are different from the trained classes
- allowing us to determine that an image is not an example of our training
classes. We evaluate SNNs on both dermoscopic and clinical images of skin
lesions. We obtain top-1 classification accuracy levels of 74.33% and 85.61% on
clinical and dermoscopic datasets, respectively. Although this is slightly
lower than the state-of-the-art results, the SNN approach has the advantage
that it can detect out-of-class examples. Our results highlight the potential
of an SNN approach as well as pathways towards future clinical deployment.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - HierAttn: Effectively Learn Representations from Stage Attention and
Branch Attention for Skin Lesions Diagnosis [18.026088450803258]
An accurate and unbiased examination of skin lesions is critical for the early diagnosis and treatment of skin cancers.
Recent studies have developed ensembled convolutional neural networks (CNNs) to classify the images for early diagnosis.
We introduce HierAttn, a lite and effective neural network with hierarchical and self attention.
arXiv Detail & Related papers (2022-05-09T14:30:34Z) - Classification of Skin Cancer Images using Convolutional Neural Networks [0.0]
Skin cancer is the most common human malignancy.
Deep neural networks show humongous potential for image classification.
Highest model accuracy achieved was over 86.65%.
arXiv Detail & Related papers (2022-02-01T17:11:41Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Method to Classify Skin Lesions using Dermoscopic images [0.0]
Skin cancer is the most common cancer in the existing world constituting one-third of the cancer cases.
In this project, an automated model for skin lesion classification using dermoscopic images has been developed with CNN(Convolution Neural Networks) as a training model.
The best accuracy this model could achieve is 0.886.
arXiv Detail & Related papers (2020-08-21T10:58:33Z) - Understanding the robustness of deep neural network classifiers for
breast cancer screening [52.50078591615855]
Deep neural networks (DNNs) show promise in breast cancer screening, but their robustness to input perturbations must be better understood before they can be clinically implemented.
We measure the sensitivity of a radiologist-level screening mammogram image classifier to four commonly studied input perturbations.
We also perform a detailed analysis on the effects of low-pass filtering, and find that it degrades the visibility of clinically meaningful features.
arXiv Detail & Related papers (2020-03-23T01:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.