論文の概要: ROAD: Learning an Implicit Recursive Octree Auto-Decoder to Efficiently
Encode 3D Shapes
- arxiv url: http://arxiv.org/abs/2212.06193v1
- Date: Mon, 12 Dec 2022 19:09:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 15:40:25.343616
- Title: ROAD: Learning an Implicit Recursive Octree Auto-Decoder to Efficiently
Encode 3D Shapes
- Title(参考訳): ROAD: 3次元形状を効率的にエンコードする不必要な再帰オクターオートデコーダ
- Authors: Sergey Zakharov, Rares Ambrus, Katherine Liu, Adrien Gaidon
- Abstract要約: 複雑な3次元形状の大規模データセットを効率よく正確に符号化する新しい暗黙表現を提案する。
暗黙的再帰的Octree Auto-Decoder (ROAD) は階層的に構造化された潜在空間を学習し、圧縮比99%以上で最先端の復元結果を実現する。
- 参考スコア(独自算出の注目度): 32.267066838654834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compact and accurate representations of 3D shapes are central to many
perception and robotics tasks. State-of-the-art learning-based methods can
reconstruct single objects but scale poorly to large datasets. We present a
novel recursive implicit representation to efficiently and accurately encode
large datasets of complex 3D shapes by recursively traversing an implicit
octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD)
learns a hierarchically structured latent space enabling state-of-the-art
reconstruction results at a compression ratio above 99%. We also propose an
efficient curriculum learning scheme that naturally exploits the coarse-to-fine
properties of the underlying octree spatial representation. We explore the
scaling law relating latent space dimension, dataset size, and reconstruction
accuracy, showing that increasing the latent space dimension is enough to scale
to large shape datasets. Finally, we show that our learned latent space encodes
a coarse-to-fine hierarchical structure yielding reusable latents across
different levels of details, and we provide qualitative evidence of
generalization to novel shapes outside the training set.
- Abstract(参考訳): 3次元形状のコンパクトで正確な表現は多くの知覚やロボット工学のタスクの中心である。
最先端の学習ベースの手法は、単一のオブジェクトを再構築できるが、大きなデータセットにはスケールしない。
本稿では,暗黙のオクツリーを潜在空間で再帰的にトラバースすることで,複雑な3次元形状の大規模データセットを効率よく正確に符号化する新しい暗黙表現を提案する。
暗黙的再帰的Octree Auto-Decoder (ROAD) は階層的に構造化された潜在空間を学習し、圧縮比99%以上で最先端の復元結果を実現する。
また,基礎となるoctree空間表現の粗さを自然に活用する効率的なカリキュラム学習手法を提案する。
本研究では, 潜在空間次元, データセットサイズ, 再構成精度に関するスケーリング則を考察し, 潜在空間次元の増加は大規模形状データセットにスケールするのに十分であることを示した。
最後に,学習した潜在性空間は,異なる詳細レベルにわたって再利用可能な潜在性をもたらす粗粒度から細粒度までの階層構造を符号化し,トレーニングセット外の新しい形状への一般化の質的証拠を提供する。
関連論文リスト
- DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow [44.72037991063735]
DetailGen3Dは、生成された3D形状を強化するために特別に設計されたジェネレーティブなアプローチである。
我々の重要な洞察は、潜在空間におけるデータ依存フローを通して、粗大から細小への変換を直接モデル化することである。
改質時に正確な空間対応を確保するためのトークンマッチング戦略を導入する。
論文 参考訳(メタデータ) (2024-11-25T17:08:17Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Neural Progressive Meshes [54.52990060976026]
本稿では,共有学習空間を用いた3次元メッシュの伝送手法を提案する。
分割型エンコーダ・デコーダアーキテクチャを用いて,この空間を学習する。
本手法は複雑な3次元形状を多種多様な形状で評価し, 圧縮率と復元品質の点で, ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-10T17:58:02Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
本稿では, 3次元LiDAR計測を用いて, 暗示表現を用いた大規模3次元再構成を実現する際の課題について述べる。
我々はオクツリーに基づく階層構造を通じて暗黙的な特徴を学習し、保存する。
我々の3D再構成は、現在の最先端3Dマッピング法よりも正確で、完全で、メモリ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-10-05T14:38:49Z) - Depth Completion using Geometry-Aware Embedding [22.333381291860498]
本稿では,幾何認識の埋め込みを効率的に学習する手法を提案する。
局所的および大域的な幾何学的構造情報を、例えば、シーンレイアウト、オブジェクトのサイズと形状などの3Dポイントから符号化し、深度推定を導く。
論文 参考訳(メタデータ) (2022-03-21T12:06:27Z) - High-fidelity 3D Model Compression based on Key Spheres [6.59007277780362]
明示的な鍵球を入力として用いたSDF予測ネットワークを提案する。
提案手法は,高忠実かつ高圧縮な3次元オブジェクトの符号化と再構成を実現する。
論文 参考訳(メタデータ) (2022-01-19T09:21:54Z) - OctField: Hierarchical Implicit Functions for 3D Modeling [18.488778913029805]
我々は3次元曲面の学習可能な階層的暗黙表現であるOctoFieldを提案し、メモリと計算予算の少ない複雑な曲面の高精度符号化を可能にする。
この目的を達成するために、曲面占有率と部分幾何学の豊かさに応じて3次元空間を適応的に分割する階層的オクツリー構造を導入する。
論文 参考訳(メタデータ) (2021-11-01T16:29:39Z) - UCLID-Net: Single View Reconstruction in Object Space [60.046383053211215]
三次元潜在空間を保存する幾何学的空間の構築は,オブジェクト座標空間における大域的形状規則性と局所的推論を同時に学習する上で有効であることを示す。
ベンチマーク目的でよく使用されるShapeNet合成画像と、我々のアプローチが最先端の画像より優れている実世界の画像の両方を実証する。
論文 参考訳(メタデータ) (2020-06-06T09:15:56Z) - 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
Prior [50.73148041205675]
セマンティック・シーン・コンプリート(SSC)タスクの目標は、単一視点で観察することで、ボリューム占有率とシーン内のオブジェクトの意味ラベルの完全な3Dボクセル表現を同時に予測することである。
低解像度のボクセル表現で深度情報を埋め込む新しい幾何学的手法を提案する。
提案手法は,SSCフレームワークからの深度特徴学習よりも有効である。
論文 参考訳(メタデータ) (2020-03-31T09:33:46Z) - Convolutional Occupancy Networks [88.48287716452002]
本稿では,オブジェクトと3Dシーンの詳細な再構築のための,より柔軟な暗黙的表現である畳み込み機能ネットワークを提案する。
畳み込みエンコーダと暗黙の占有デコーダを組み合わせることで、帰納的バイアスが組み込まれ、3次元空間における構造的推論が可能となる。
実験により,本手法は単一物体の微細な3次元再構成,大規模屋内シーンへのスケール,合成データから実データへの一般化を可能にした。
論文 参考訳(メタデータ) (2020-03-10T10:17:07Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) は連続的な出力を提供し、複数のトポロジを扱える。
IF-NetsはShapeNetにおける3次元オブジェクト再構成における先行作業よりも明らかに優れており、より正確な3次元人間の再構成が得られる。
論文 参考訳(メタデータ) (2020-03-03T11:14:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。