Quantum Phase Recognition using Quantum Tensor Networks
- URL: http://arxiv.org/abs/2212.06207v1
- Date: Mon, 12 Dec 2022 19:29:07 GMT
- Title: Quantum Phase Recognition using Quantum Tensor Networks
- Authors: Shweta Sahoo, Utkarsh Azad and Harjinder Singh
- Abstract summary: This paper examines a quantum machine learning approach based on shallow variational ansatz inspired by tensor networks for supervised learning tasks.
We are able to reach $geq 98%$ test-set accuracies with both multi-scale entanglement renormalization ansatz (MERA) and tree tensor network (TTN) inspired parametrized quantum circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) has recently facilitated many advances in solving
problems related to many-body physical systems. Given the intrinsic quantum
nature of these problems, it is natural to speculate that quantum-enhanced
machine learning will enable us to unveil even greater details than we
currently have. With this motivation, this paper examines a quantum machine
learning approach based on shallow variational ansatz inspired by tensor
networks for supervised learning tasks. In particular, we first look at the
standard image classification tasks using the Fashion-MNIST dataset and study
the effect of repeating tensor network layers on ansatz's expressibility and
performance. Finally, we use this strategy to tackle the problem of quantum
phase recognition for the transverse-field Ising and Heisenberg spin models in
one and two dimensions, where we were able to reach $\geq 98\%$ test-set
accuracies with both multi-scale entanglement renormalization ansatz (MERA) and
tree tensor network (TTN) inspired parametrized quantum circuits.
Related papers
- Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
Quantum-Train (QT) is a hybrid quantum-classical machine learning framework.
It maps quantum state measurements to classical neural network weights.
Traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability.
We introduce a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes.
arXiv Detail & Related papers (2024-09-11T03:51:34Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Training-efficient density quantum machine learning [2.918930150557355]
Quantum machine learning requires powerful, flexible and efficiently trainable models.
We present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries.
arXiv Detail & Related papers (2024-05-30T16:40:28Z) - Jet Discrimination with Quantum Complete Graph Neural Network [1.684646794156297]
We propose the Quantum Complete Graph Neural Network (QCGNN), which is a variational quantum algorithm based on complete graphs.
We investigate the application of QCGNN with the challenging task of jet discrimination, where the jets are represented as complete graphs.
arXiv Detail & Related papers (2024-03-08T02:02:23Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection [5.609958919699706]
We present a simple unsupervised method for quantum-classical convolutional networks to learn a hierarchy of quantum feature extractors.
The main contribution of the proposed approach is to use the $K$-means clustering to maximize the difference of quantum properties in quantum circuit ansatz.
arXiv Detail & Related papers (2021-07-17T03:16:59Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Solving Quantum Master Equations with Deep Quantum Neural Networks [0.0]
We use deep quantum feedforward neural networks capable of universal quantum computation to represent the mixed states for open quantum many-body systems.
Owning to the special structure of the quantum networks, this approach enjoys a number of notable features, including the absence of barren plateaus.
arXiv Detail & Related papers (2020-08-12T18:00:08Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.