An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection
- URL: http://arxiv.org/abs/2107.08171v1
- Date: Sat, 17 Jul 2021 03:16:59 GMT
- Title: An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection
- Authors: Tong Dou, Zhenwei Zhou, Kaiwei Wang, Shilu Yan, Wei Cui
- Abstract summary: We present a simple unsupervised method for quantum-classical convolutional networks to learn a hierarchy of quantum feature extractors.
The main contribution of the proposed approach is to use the $K$-means clustering to maximize the difference of quantum properties in quantum circuit ansatz.
- Score: 5.609958919699706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining the advantages of quantum computing and neural networks, quantum
neural networks (QNNs) have gained considerable attention recently. However,
because of the lack of quantum resource, it is costly to train QNNs. In this
work, we presented a simple unsupervised method for quantum-classical
convolutional networks to learn a hierarchy of quantum feature extractors. Each
level of the resulting feature extractors consist of multiple quanvolution
filters, followed by a pooling layer. The main contribution of the proposed
approach is to use the $K$-means clustering to maximize the difference of
quantum properties in quantum circuit ansatz. One experiment on the bearing
fault detection task shows the effectiveness of the proposed method.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
This paper examines a quantum machine learning approach based on shallow variational ansatz inspired by tensor networks for supervised learning tasks.
We are able to reach $geq 98%$ test-set accuracies with both multi-scale entanglement renormalization ansatz (MERA) and tree tensor network (TTN) inspired parametrized quantum circuits.
arXiv Detail & Related papers (2022-12-12T19:29:07Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks [2.962453125262748]
gradient-free approach for training multi-layered neural networks based upon quantum perceptrons.
We make use of measurable operators to define the states of the network in a manner consistent with a Markov process.
arXiv Detail & Related papers (2020-09-23T01:38:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.