論文の概要: Interpretable Diabetic Retinopathy Diagnosis based on Biomarker
Activation Map
- arxiv url: http://arxiv.org/abs/2212.06299v1
- Date: Tue, 13 Dec 2022 00:45:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 14:20:54.474453
- Title: Interpretable Diabetic Retinopathy Diagnosis based on Biomarker
Activation Map
- Title(参考訳): Biomarker Activation Mapによる糖尿病網膜症の診断
- Authors: Pengxiao Zang, Tristan T. Hormel, Jie Wang, Yukun Guo, Steven T.
Bailey, Christina J. Flaxel, David Huang, Thomas S. Hwang, and Yali Jia
- Abstract要約: 生成的対角学習に基づく新しいバイオマーカー活性化マップ(BAM)フレームワークを提案する。
456個の黄斑スキャンを含むデータセットを、現在の臨床基準に基づいて非参照型または参照型DRとして評価した。
生成したBAMは非灌流領域や網膜液を含む既知の病態の特徴を強調した。
- 参考スコア(独自算出の注目度): 2.6170980960630037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning classifiers provide the most accurate means of automatically
diagnosing diabetic retinopathy (DR) based on optical coherence tomography
(OCT) and its angiography (OCTA). The power of these models is attributable in
part to the inclusion of hidden layers that provide the complexity required to
achieve a desired task. However, hidden layers also render algorithm outputs
difficult to interpret. Here we introduce a novel biomarker activation map
(BAM) framework based on generative adversarial learning that allows clinicians
to verify and understand classifiers decision-making. A data set including 456
macular scans were graded as non-referable or referable DR based on current
clinical standards. A DR classifier that was used to evaluate our BAM was first
trained based on this data set. The BAM generation framework was designed by
combing two U-shaped generators to provide meaningful interpretability to this
classifier. The main generator was trained to take referable scans as input and
produce an output that would be classified by the classifier as non-referable.
The BAM is then constructed as the difference image between the output and
input of the main generator. To ensure that the BAM only highlights
classifier-utilized biomarkers an assistant generator was trained to do the
opposite, producing scans that would be classified as referable by the
classifier from non-referable scans. The generated BAMs highlighted known
pathologic features including nonperfusion area and retinal fluid. A fully
interpretable classifier based on these highlights could help clinicians better
utilize and verify automated DR diagnosis.
- Abstract(参考訳): 深層学習分類器は、光学コヒーレンス断層撮影(oct)とその血管造影(octa)に基づいて糖尿病網膜症(dr)を自動的に診断する最も正確な手段を提供する。
これらのモデルのパワーは、部分的には、望ましいタスクを達成するのに必要な複雑さを提供する隠されたレイヤを含めることに起因する。
しかし、隠れた層はアルゴリズムの出力を解釈しにくくする。
本稿では, 臨床医が分類器の意思決定を検証・理解するための, 生成的敵対学習に基づく新しいバイオマーカー活性化マップ(BAM)フレームワークを提案する。
456個の黄斑スキャンを含むデータセットを、現在の臨床基準に基づいて非参照型または参照型DRとして評価した。
BAMを評価するのに使われたDR分類器は、このデータセットに基づいて最初に訓練された。
BAM生成フレームワークは、2つのU字型ジェネレータを組み合わせて設計され、この分類器に意味のある解釈性を提供する。
メインジェネレータは、参照可能なスキャンを入力として取り、分類器によって非参照可能な出力を生成するように訓練された。
次に、bamを主発電機の出力と入力との差分画像として構成する。
BAMが分類器を利用したバイオマーカーのみを強調するようにするために、アシスタントジェネレータは反対に行うように訓練され、参照できないスキャンから分類器によって参照可能なスキャンを生成する。
生成したBAMは非灌流領域や網膜液を含む既知の病態の特徴を強調した。
これらのハイライトに基づいて完全に解釈可能な分類器は、臨床医が自動DR診断をよりよく活用し、検証するのに役立ちます。
関連論文リスト
- COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
論文 参考訳(メタデータ) (2024-04-19T12:09:49Z) - Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers with
Partially Annotated Ultrasound Images [19.374895481597466]
診断精度を高めるために弱教師付き学習に基づく2段階検出・診断ネットワーク(TSDDNet)を提案する。
提案するTSDDNetはBモード超音波データセットを用いて評価し,その実験結果から病変検出と診断の両タスクにおいて最高の性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-06-12T09:26:54Z) - Prostate Lesion Detection and Salient Feature Assessment Using
Zone-Based Classifiers [0.0]
マルチパラメトリックMRI(Multi-parametric magnetic resonance imaging)は前立腺癌の病変の検出において役割を担っている。
これらのスキャンを解釈する医療専門家は、コンピュータ支援検出システムを用いることで、ヒューマンエラーのリスクを低減することが重要である。
本稿では,各前立腺領域に最適な機械学習分類器について検討する。
論文 参考訳(メタデータ) (2022-08-24T13:08:56Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - Breaking with Fixed Set Pathology Recognition through Report-Guided
Contrastive Training [23.506879497561712]
我々は、非構造化医療報告から直接概念を学ぶために、対照的なグローバルローカルなデュアルエンコーダアーキテクチャを採用している。
疾患分類のための大規模胸部X線データセットMIMIC-CXR,CheXpert,ChestX-Ray14について検討した。
論文 参考訳(メタデータ) (2022-05-14T21:44:05Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox
Models [48.374678491735665]
クラス固有RIsk境界(SCRIB)を用いたSet-classifierを導入し,この問題に対処する。
SCRIBは、クラス固有の予測リスクを理論的保証で制御するセット分類器を構築する。
脳波(EEG)データによる睡眠ステージング,X線COVID画像分類,心電図(ECG)データに基づく心房細動検出など,いくつかの医学的応用についてSCRIBを検証した。
論文 参考訳(メタデータ) (2021-03-05T21:06:12Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。