Learning and Predicting Multimodal Vehicle Action Distributions in a
Unified Probabilistic Model Without Labels
- URL: http://arxiv.org/abs/2212.07013v1
- Date: Wed, 14 Dec 2022 04:01:19 GMT
- Title: Learning and Predicting Multimodal Vehicle Action Distributions in a
Unified Probabilistic Model Without Labels
- Authors: Charles Richter, Patrick R. Barrag\'an, Sertac Karaman
- Abstract summary: We present a unified probabilistic model that learns a representative set of discrete vehicle actions and predicts the probability of each action given a particular scenario.
Our model also enables us to estimate the distribution over continuous trajectories conditioned on a scenario, representing what each discrete action would look like if executed in that scenario.
- Score: 26.303522885475406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a unified probabilistic model that learns a representative set of
discrete vehicle actions and predicts the probability of each action given a
particular scenario. Our model also enables us to estimate the distribution
over continuous trajectories conditioned on a scenario, representing what each
discrete action would look like if executed in that scenario. While our primary
objective is to learn representative action sets, these capabilities combine to
produce accurate multimodal trajectory predictions as a byproduct. Although our
learned action representations closely resemble semantically meaningful
categories (e.g., "go straight", "turn left", etc.), our method is entirely
self-supervised and does not utilize any manually generated labels or
categories. Our method builds upon recent advances in variational inference and
deep unsupervised clustering, resulting in full distribution estimates based on
deterministic model evaluations.
Related papers
- Reconciling Model Multiplicity for Downstream Decision Making [24.335927243672952]
We show that even when the two predictive models approximately agree on their individual predictions almost everywhere, it is still possible for their induced best-response actions to differ on a substantial portion of the population.
We propose a framework that calibrates the predictive models with regard to both the downstream decision-making problem and the individual probability prediction.
arXiv Detail & Related papers (2024-05-30T03:36:46Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
arXiv Detail & Related papers (2022-03-31T09:24:32Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Discriminative, Generative and Self-Supervised Approaches for
Target-Agnostic Learning [8.666667951130892]
generative and self-supervised learning models are shown to perform well at the task.
Our derived theorem for the pseudo-likelihood theory also shows that they are related for inferring a joint distribution model.
arXiv Detail & Related papers (2020-11-12T15:03:40Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.