Reconciling Model Multiplicity for Downstream Decision Making
- URL: http://arxiv.org/abs/2405.19667v1
- Date: Thu, 30 May 2024 03:36:46 GMT
- Title: Reconciling Model Multiplicity for Downstream Decision Making
- Authors: Ally Yalei Du, Dung Daniel Ngo, Zhiwei Steven Wu,
- Abstract summary: We show that even when the two predictive models approximately agree on their individual predictions almost everywhere, it is still possible for their induced best-response actions to differ on a substantial portion of the population.
We propose a framework that calibrates the predictive models with regard to both the downstream decision-making problem and the individual probability prediction.
- Score: 24.335927243672952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of model multiplicity in downstream decision-making, a setting where two predictive models of equivalent accuracy cannot agree on the best-response action for a downstream loss function. We show that even when the two predictive models approximately agree on their individual predictions almost everywhere, it is still possible for their induced best-response actions to differ on a substantial portion of the population. We address this issue by proposing a framework that calibrates the predictive models with regard to both the downstream decision-making problem and the individual probability prediction. Specifically, leveraging tools from multi-calibration, we provide an algorithm that, at each time-step, first reconciles the differences in individual probability prediction, then calibrates the updated models such that they are indistinguishable from the true probability distribution to the decision-maker. We extend our results to the setting where one does not have direct access to the true probability distribution and instead relies on a set of i.i.d data to be the empirical distribution. Finally, we provide a set of experiments to empirically evaluate our methods: compared to existing work, our proposed algorithm creates a pair of predictive models with both improved downstream decision-making losses and agrees on their best-response actions almost everywhere.
Related papers
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
We propose a novel approach called DistPred for regression and forecasting tasks.
We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.
This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
arXiv Detail & Related papers (2024-06-17T10:33:00Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks.
We propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set.
arXiv Detail & Related papers (2022-10-24T13:28:43Z) - Predictive Multiplicity in Probabilistic Classification [25.111463701666864]
We present a framework for measuring predictive multiplicity in probabilistic classification.
We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks.
Our results emphasize the need to report predictive multiplicity more widely.
arXiv Detail & Related papers (2022-06-02T16:25:29Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.