Temporal Saliency Detection Towards Explainable Transformer-based
Timeseries Forecasting
- URL: http://arxiv.org/abs/2212.07771v3
- Date: Fri, 15 Sep 2023 08:31:09 GMT
- Title: Temporal Saliency Detection Towards Explainable Transformer-based
Timeseries Forecasting
- Authors: Nghia Duong-Trung, Duc-Manh Nguyen, Danh Le-Phuoc
- Abstract summary: This paper introduces Temporal Saliency Detection (TSD), an effective approach that builds upon the attention mechanism and applies it to multi-horizon time series prediction.
The TSD approach facilitates the multiresolution analysis of saliency patterns by condensing multi-heads, thereby progressively enhancing the forecasting of complex time series data.
- Score: 3.046315755726937
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the notable advancements in numerous Transformer-based models, the
task of long multi-horizon time series forecasting remains a persistent
challenge, especially towards explainability. Focusing on commonly used
saliency maps in explaining DNN in general, our quest is to build
attention-based architecture that can automatically encode saliency-related
temporal patterns by establishing connections with appropriate attention heads.
Hence, this paper introduces Temporal Saliency Detection (TSD), an effective
approach that builds upon the attention mechanism and applies it to
multi-horizon time series prediction. While our proposed architecture adheres
to the general encoder-decoder structure, it undergoes a significant renovation
in the encoder component, wherein we incorporate a series of information
contracting and expanding blocks inspired by the U-Net style architecture. The
TSD approach facilitates the multiresolution analysis of saliency patterns by
condensing multi-heads, thereby progressively enhancing the forecasting of
complex time series data. Empirical evaluations illustrate the superiority of
our proposed approach compared to other models across multiple standard
benchmark datasets in diverse far-horizon forecasting settings. The initial TSD
achieves substantial relative improvements of 31% and 46% over several models
in the context of multivariate and univariate prediction. We believe the
comprehensive investigations presented in this study will offer valuable
insights and benefits to future research endeavors.
Related papers
- DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTS is a tailored framework for modeling disentangled channel evolving patterns in general time series forecasting.
We introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics.
arXiv Detail & Related papers (2024-10-30T12:46:14Z) - A Comprehensive Survey of Time Series Forecasting: Architectural Diversity and Open Challenges [37.20655606514617]
Time series forecasting is a critical task that provides key information for decision-making across various fields.
Deep learning architectures such as ass, CNNs, RNNs, and GNNs have been developed and applied to solve time series forecasting problems.
Transformer models, which excel at handling long-term dependencies, have become significant architectural components for time series forecasting.
arXiv Detail & Related papers (2024-10-24T07:43:55Z) - TSI: A Multi-View Representation Learning Approach for Time Series Forecasting [29.05140751690699]
This study introduces a novel multi-view approach for time series forecasting.
It integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation.
This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships.
arXiv Detail & Related papers (2024-09-30T02:11:57Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Generating Sparse Counterfactual Explanations For Multivariate Time
Series [0.5161531917413706]
We propose a generative adversarial network (GAN) architecture that generates SPARse Counterfactual Explanations for multivariate time series.
Our approach provides a custom sparsity layer and regularizes the counterfactual loss function in terms of similarity, sparsity, and smoothness of trajectories.
We evaluate our approach on real-world human motion datasets as well as a synthetic time series interpretability benchmark.
arXiv Detail & Related papers (2022-06-02T08:47:06Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty.
We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.
arXiv Detail & Related papers (2022-03-09T17:53:47Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.