DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2410.22981v1
- Date: Wed, 30 Oct 2024 12:46:14 GMT
- Title: DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting
- Authors: Zhiding Liu, Jiqian Yang, Qingyang Mao, Yuze Zhao, Mingyue Cheng, Zhi Li, Qi Liu, Enhong Chen,
- Abstract summary: DisenTS is a tailored framework for modeling disentangled channel evolving patterns in general time series forecasting.
We introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics.
- Score: 43.071713191702486
- License:
- Abstract: Multivariate time series forecasting plays a crucial role in various real-world applications. Significant efforts have been made to integrate advanced network architectures and training strategies that enhance the capture of temporal dependencies, thereby improving forecasting accuracy. On the other hand, mainstream approaches typically utilize a single unified model with simplistic channel-mixing embedding or cross-channel attention operations to account for the critical intricate inter-channel dependencies. Moreover, some methods even trade capacity for robust prediction based on the channel-independent assumption. Nonetheless, as time series data may display distinct evolving patterns due to the unique characteristics of each channel (including multiple strong seasonalities and trend changes), the unified modeling methods could yield suboptimal results. To this end, we propose DisenTS, a tailored framework for modeling disentangled channel evolving patterns in general multivariate time series forecasting. The central idea of DisenTS is to model the potential diverse patterns within the multivariate time series data in a decoupled manner. Technically, the framework employs multiple distinct forecasting models, each tasked with uncovering a unique evolving pattern. To guide the learning process without supervision of pattern partition, we introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics. The forecasters' states are derived from the Linear Weight Approximation (LWA) strategy, which quantizes the complex deep neural networks into compact matrices. Additionally, the Similarity Constraint (SC) is further proposed to guide each model to specialize in an underlying pattern by minimizing the mutual information between the representations.
Related papers
- UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks [9.006068771300377]
We present ForecastGrapher, a framework for capturing the intricate temporal dynamics and inter-series correlations.
Our approach is underpinned by three pivotal steps: generating custom node embeddings to reflect the temporal variations within each series; constructing an adaptive adjacency matrix to encode the inter-series correlations; and thirdly, augmenting the GNNs' expressive power by diversifying the node feature distribution.
arXiv Detail & Related papers (2024-05-28T10:40:20Z) - Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling [14.170879566023098]
We introduce a learnable decomposition strategy to capture dynamic trend information more reasonably.
We also propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously.
arXiv Detail & Related papers (2024-02-20T03:45:59Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting [19.573651104129443]
Long-term time series forecasting plays an important role in various real-world scenarios.
Recent deep learning methods for long-term series forecasting tend to capture the intricate patterns of time series by decomposition-based or sampling-based methods.
We propose a novel deep learning network architecture, named Multi-resolution Periodic Pattern Network (MPPN), for long-term series forecasting.
arXiv Detail & Related papers (2023-06-12T07:00:37Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - A Pattern Discovery Approach to Multivariate Time Series Forecasting [27.130141538089152]
State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length.
We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns.
We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series.
arXiv Detail & Related papers (2022-12-20T14:54:04Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.