A Neural Network Warm-Start Approach for the Inverse Acoustic Obstacle
Scattering Problem
- URL: http://arxiv.org/abs/2212.08736v3
- Date: Thu, 3 Aug 2023 11:58:08 GMT
- Title: A Neural Network Warm-Start Approach for the Inverse Acoustic Obstacle
Scattering Problem
- Authors: Mo Zhou, Jiequn Han, Manas Rachh, Carlos Borges
- Abstract summary: We present a neural network warm-start approach for solving the inverse scattering problem.
An initial guess for the optimization problem is obtained using a trained neural network.
The algorithm remains robust to noise in the scattered field measurements and also converges to the true solution for limited aperture data.
- Score: 7.624866197576227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the inverse acoustic obstacle problem for sound-soft star-shaped
obstacles in two dimensions wherein the boundary of the obstacle is determined
from measurements of the scattered field at a collection of receivers outside
the object. One of the standard approaches for solving this problem is to
reformulate it as an optimization problem: finding the boundary of the domain
that minimizes the $L^2$ distance between computed values of the scattered
field and the given measurement data. The optimization problem is
computationally challenging since the local set of convexity shrinks with
increasing frequency and results in an increasing number of local minima in the
vicinity of the true solution. In many practical experimental settings, low
frequency measurements are unavailable due to limitations of the experimental
setup or the sensors used for measurement. Thus, obtaining a good initial guess
for the optimization problem plays a vital role in this environment.
We present a neural network warm-start approach for solving the inverse
scattering problem, where an initial guess for the optimization problem is
obtained using a trained neural network. We demonstrate the effectiveness of
our method with several numerical examples. For high frequency problems, this
approach outperforms traditional iterative methods such as Gauss-Newton
initialized without any prior (i.e., initialized using a unit circle), or
initialized using the solution of a direct method such as the linear sampling
method. The algorithm remains robust to noise in the scattered field
measurements and also converges to the true solution for limited aperture data.
However, the number of training samples required to train the neural network
scales exponentially in frequency and the complexity of the obstacles
considered. We conclude with a discussion of this phenomenon and potential
directions for future research.
Related papers
- A neural network approach for solving the Monge-Ampère equation with transport boundary condition [0.0]
This paper introduces a novel neural network-based approach to solving the Monge-Ampere equation with the transport boundary condition.
We leverage multilayer perceptron networks to learn approximate solutions by minimizing a loss function that encompasses the equation's residual, boundary conditions, and convexity constraints.
arXiv Detail & Related papers (2024-10-25T11:54:00Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Bayes-optimal learning of an extensive-width neural network from quadratically many samples [28.315491743569897]
We consider the problem of learning a target function corresponding to a single hidden layer neural network.
We consider the limit where the input dimension and the network width are proportionally large.
arXiv Detail & Related papers (2024-08-07T12:41:56Z) - Data-driven rules for multidimensional reflection problems [1.0742675209112622]
We study a multivariate singular control problem for reversible diffusions with controls of reflection type.
For given diffusion dynamics, assuming the optimal domain to be strongly star-shaped, we propose a gradient descent algorithm based on polytope approximations to numerically determine a cost-minimizing domain.
Finally, we investigate data-driven solutions when the diffusion dynamics are unknown to the controller.
arXiv Detail & Related papers (2023-11-11T18:36:17Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser [7.7288480250888]
We develop a robust and general methodology for making use of implicit priors in deep neural networks.
A CNN trained to perform blind (i.e., with unknown noise level) least-squares denoising is presented.
A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any linear inverse problem.
arXiv Detail & Related papers (2020-07-27T15:40:46Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.