Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems
- URL: http://arxiv.org/abs/2410.02819v1
- Date: Wed, 25 Sep 2024 07:52:29 GMT
- Title: Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems
- Authors: Marien Chenaud, Frédéric Magoulès, José Alves,
- Abstract summary: We introduce a hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements.
After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions.
Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.
- Score: 0.24578723416255746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent rise of deep learning has led to numerous applications, including solving partial differential equations using Physics-Informed Neural Networks. This approach has proven highly effective in several academic cases. However, their lack of physical invariances, coupled with other significant weaknesses, such as an inability to handle complex geometries or their lack of generalization capabilities, make them unable to compete with classical numerical solvers in industrial settings. In this work, a limitation regarding the use of automatic differentiation in the context of physics-informed learning is highlighted. A hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements is introduced. After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions. Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs)
This paper reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations)
arXiv Detail & Related papers (2024-09-17T06:00:18Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems.
The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-parametric Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2024-06-03T08:51:25Z) - Separable Physics-Informed Neural Networks for the solution of
elasticity problems [0.0]
A method for solving elasticity problems based on separable physics-informed neural networks (SPINN) in conjunction with the deep energy method (DEM) is presented.
Numerical experiments have been carried out for a number of problems showing that this method has a significantly higher convergence rate and accuracy than the vanilla physics-informed neural networks (PINN) and even SPINN.
arXiv Detail & Related papers (2024-01-24T14:34:59Z) - Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries [0.0]
We justify the use of graph neural networks for solving partial differential equations.
An alternative procedure is proposed, by combining classical numerical solvers and the Physics-Informed framework.
We propose an implementation of this approach, that we test on a three-dimensional problem on an irregular geometry.
arXiv Detail & Related papers (2023-10-20T09:46:12Z) - An Analysis of Physics-Informed Neural Networks [0.0]
We present a new approach to approximating the solution to physical systems - physics-informed neural networks.
The concept of artificial neural networks is introduced, the objective function is defined, and optimisation strategies are discussed.
The partial differential equation is then included as a constraint in the loss function for the problem, giving the network access to knowledge of the dynamics of the physical system it is modelling.
arXiv Detail & Related papers (2023-03-06T04:45:53Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.