論文の概要: An Efficient Drug-Drug Interactions Prediction Technology for
Molecularly Intelligent Manufacturing
- arxiv url: http://arxiv.org/abs/2212.09400v2
- Date: Thu, 22 Dec 2022 01:57:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 11:27:47.728629
- Title: An Efficient Drug-Drug Interactions Prediction Technology for
Molecularly Intelligent Manufacturing
- Title(参考訳): 分子知能製造のための効率的な薬物・薬物相互作用予測技術
- Authors: Peng Gao, Feng Gao, Jian-Cheng Ni
- Abstract要約: 薬物と薬物の相互作用(DDI)の予測は、分子分野において重要な問題である。
本稿では,グラフニューラルネットワークに基づくMedKGQAという計算モデルを提案する。
- 参考スコア(独自算出の注目度): 9.887336975759306
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Drug-Drug Interactions (DDIs) prediction is an essential issue in the
molecular field. Traditional methods of observing DDIs in medical experiments
require plenty of resources and labor. In this paper, we present a
computational model dubbed MedKGQA based on Graph Neural Networks to
automatically predict the DDIs after reading multiple medical documents in the
form of multi-hop machine reading comprehension. We introduced a knowledge
fusion system to obtain the complete nature of drugs and proteins and exploited
a graph reasoning system to infer the drugs and proteins contained in the
documents. Our model significantly improves the performance compared to
previous state-of-the-art models on the QANGAROO MedHop dataset, which obtained
a 4.5% improvement in terms of DDIs prediction accuracy.
- Abstract(参考訳): 薬物-薬物相互作用(ddis)の予測は分子分野において不可欠な問題である。
医学実験における従来のDDIの観察方法は、多くの資源と労力を必要とする。
本稿では,複数の医療用文書をマルチホップ機械読解という形で読み取った後,自動的にddisを予測するグラフニューラルネットワークに基づくmedkgqaと呼ばれる計算モデルを提案する。
我々は,薬物とタンパク質の完全な性質を得るための知識融合システムを導入し,その文書に含まれる薬物とタンパク質を推算するグラフ推論システムを開発した。
本モデルでは,DDIの予測精度を4.5%向上したQANGAROO MedHopデータセットと比較して,性能を著しく向上する。
関連論文リスト
- Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
本稿では,テキスト内薬物相乗学習のための新しい設定とモデルを提案する。
特定のがん細胞標的の文脈における10~20の薬物相乗関係の「個人化データセット」を作成した。
私たちの目標は、その文脈で追加の薬物シナジー関係を予測することです。
論文 参考訳(メタデータ) (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Analysis of Drug repurposing Knowledge graphs for Covid-19 [0.0]
本研究は、薬物再資源知識グラフ(DRKG)を用いた新型コロナウイルスの候補薬剤のセットを提案する。
DRKGは、大量のオープンソースバイオメディカル知識を用いて構築された生物学的知識グラフである。
ノードと関係埋め込みは知識グラフ埋め込みモデルとニューラルネットワークおよび注意関連モデルを用いて学習される。
論文 参考訳(メタデータ) (2022-12-07T19:14:17Z) - Communicative Subgraph Representation Learning for Multi-Relational
Inductive Drug-Gene Interaction Prediction [17.478102754113294]
マルチリレーショナル・インダクティブ・ドラッグ-遺伝子相互作用予測(CoSMIG)のための新しいコミュニケーティブ・サブグラフ表現学習法を提案する。
このモデルは、通信メッセージパッシング機構を通じて、薬物遺伝子グラフの関係を強化した。
提案手法は,トランスダクティブシナリオにおいて最先端のベースラインより優れ,インダクティブシナリオでは優れた性能を実現した。
論文 参考訳(メタデータ) (2022-05-12T08:53:45Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - Relational graph convolutional networks for predicting blood-brain
barrier penetration of drug molecules [12.041672273431994]
薬物分子のBBB透過能の評価は、脳薬物開発における重要なステップである。
関連グラフ畳み込みネットワーク(RGCN)を用いて,各薬剤の特徴だけでなく,薬物とタンパク質の関係も扱う。
この性能はすでに有望であり、BBB透過性の予測において、薬物-タンパク質/ドラッグ関係が重要な役割を担っていることを証明した。
論文 参考訳(メタデータ) (2021-07-04T15:56:02Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
薬物発見分野に新しい技術を適用することに興味を持つ機械学習や知識グラフの実践者を支援することを目的としている。
様々な創薬中心の知識グラフの構築に適した情報を含む公開のプライマリデータソースを詳細に説明します。
論文 参考訳(メタデータ) (2021-02-19T17:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。