Medical Knowledge Graph QA for Drug-Drug Interaction Prediction based on
Multi-hop Machine Reading Comprehension
- URL: http://arxiv.org/abs/2212.09400v3
- Date: Fri, 23 Feb 2024 01:45:32 GMT
- Title: Medical Knowledge Graph QA for Drug-Drug Interaction Prediction based on
Multi-hop Machine Reading Comprehension
- Authors: Peng Gao, Feng Gao, Jian-Cheng Ni, Yu Wang, Fei Wang
- Abstract summary: This paper presents a medical knowledge graph question answering model, dubbed MedKGQA.
It predicts drug-drug interaction by employing machine reading comprehension from closed-domain literature and constructing a knowledge graph of drug-protein triplets from open-domain documents.
The proposed model achieved a 4.5% improvement in terms of drug-drug interaction prediction accuracy compared to previous state-of-the-art models on the Qangaroo MedHop dataset.
- Score: 18.34651382394962
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Drug-drug interaction prediction is a crucial issue in molecular biology.
Traditional methods of observing drug-drug interactions through medical
experiments require significant resources and labor. This paper presents a
medical knowledge graph question answering model, dubbed MedKGQA, that predicts
drug-drug interaction by employing machine reading comprehension from
closed-domain literature and constructing a knowledge graph of drug-protein
triplets from open-domain documents. The model vectorizes the drug-protein
target attributes in the graph using entity embeddings and establishes directed
connections between drug and protein entities based on the metabolic
interaction pathways of protein targets in the human body. This aligns multiple
external knowledge and applies it to learn the graph neural network. Without
bells and whistles, the proposed model achieved a 4.5% improvement in terms of
drug-drug interaction prediction accuracy compared to previous state-of-the-art
models on the Qangaroo MedHop dataset. Experimental results demonstrate the
efficiency and effectiveness of the model and verify the feasibility of
integrating external knowledge in machine reading comprehension tasks.
Related papers
- Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Analysis of Drug repurposing Knowledge graphs for Covid-19 [0.0]
This study proposes a set of candidate drugs for COVID-19 using Drug repurposing knowledge graph (DRKG)
DRKG is a biological knowledge graph constructed using a vast amount of open source biomedical knowledge.
nodes and relation embeddings are learned using knowledge graph embedding models and neural network and attention related models.
arXiv Detail & Related papers (2022-12-07T19:14:17Z) - Communicative Subgraph Representation Learning for Multi-Relational
Inductive Drug-Gene Interaction Prediction [17.478102754113294]
We propose a novel Communicative Subgraph representation learning for Multi-relational Inductive drug-Gene interactions prediction (CoSMIG)
The model strengthened the relations on the drug-gene graph through a communicative message passing mechanism.
Our method outperformed state-of-the-art baselines in the transductive scenarios and achieved superior performance in the inductive ones.
arXiv Detail & Related papers (2022-05-12T08:53:45Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Relational graph convolutional networks for predicting blood-brain
barrier penetration of drug molecules [12.041672273431994]
The evaluation of the BBB penetrating ability of drug molecules is a critical step in brain drug development.
We employ the relational graph convolutional network (RGCN) to handle the drug-protein relations as well as the features of each individual drug.
The performance was already promising, demonstrating the significant role of the drug-protein/drug relations in the prediction of BBB permeability.
arXiv Detail & Related papers (2021-07-04T15:56:02Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
We aim to help guide machine learning and knowledge graph practitioners who are interested in applying new techniques to the drug discovery field.
We detail publicly available primary data sources containing information suitable for use in constructing various drug discovery focused knowledge graphs.
arXiv Detail & Related papers (2021-02-19T17:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.