論文の概要: Interactive Cartoonization with Controllable Perceptual Factors
- arxiv url: http://arxiv.org/abs/2212.09555v1
- Date: Mon, 19 Dec 2022 15:45:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 17:49:21.189574
- Title: Interactive Cartoonization with Controllable Perceptual Factors
- Title(参考訳): 制御可能な知覚因子を用いた対話的漫画化
- Authors: Namhyuk Ahn, Patrick Kwon, Jihye Back, Kibeom Hong, Seungkwon Kim
- Abstract要約: 漫画作成プロセスに基づいたテクスチャと色彩の編集機能を備えた新しいソリューションを提案する。
テクスチャデコーダでは、ユーザがストロークスタイルや抽象化を制御し、多様なマンガテクスチャを生成することができるテクスチャコントローラを提案する。
また、多様な色変換を生成するために、ネットワークを誘導するHSV色拡張も導入する。
- 参考スコア(独自算出の注目度): 5.8641445422054765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cartoonization is a task that renders natural photos into cartoon styles.
Previous deep cartoonization methods only have focused on end-to-end
translation, which may hinder editability. Instead, we propose a novel solution
with editing features of texture and color based on the cartoon creation
process. To do that, we design a model architecture to have separate decoders,
texture and color, to decouple these attributes. In the texture decoder, we
propose a texture controller, which enables a user to control stroke style and
abstraction to generate diverse cartoon textures. We also introduce an HSV
color augmentation to induce the networks to generate diverse and controllable
color translation. To the best of our knowledge, our work is the first deep
approach to control the cartoonization at inference while showing profound
quality improvement over to baselines.
- Abstract(参考訳): カルトン化(Cartoonization)は、自然な写真を漫画のスタイルに変換するタスクである。
従来のディープ・マンガライズ手法はエンドツーエンド翻訳のみに焦点を当てており、編集性を妨げる可能性がある。
そこで本研究では,漫画作成プロセスに基づくテクスチャや色彩の編集機能を備えた新しいソリューションを提案する。
そのために、モデルアーキテクチャを設計し、それらの属性を分離するために、デコーダ、テクスチャ、色を分離する。
テクスチャデコーダでは、ユーザがストロークスタイルや抽象化を制御し、多様なマンガテクスチャを生成することができるテクスチャコントローラを提案する。
また、多様な色変換を生成するために、ネットワークを誘導するHSVカラー拡張を導入する。
私たちの知る限りでは、私たちの研究は推論のマンガ化をコントロールし、ベースラインに対する大幅な品質改善を示す最初の深いアプローチです。
関連論文リスト
- Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
ネットワークがセグメント間の関係を理解することができる包摂的マッチングを導入する。
ネットワークのトレーニングパイプラインは、カラー化と連続フレームカラー化の両方のパフォーマンスを著しく向上させる。
ネットワークのトレーニングをサポートするために、PaintBucket-Characterというユニークなデータセットを開発しました。
論文 参考訳(メタデータ) (2024-10-25T09:33:27Z) - SketchDeco: Decorating B&W Sketches with Colour [80.90808879991182]
本稿では,色彩の普遍的な幼児期活動に触発された,色彩のスケッチ化への新たなアプローチを紹介する。
精度と利便性のバランスを考慮し,地域マスクとカラーパレットを用いて直感的なユーザコントロールを実現する。
論文 参考訳(メタデータ) (2024-05-29T02:53:59Z) - LASER: Tuning-Free LLM-Driven Attention Control for Efficient Text-conditioned Image-to-Animation [62.232361821779335]
本稿では,プロンプト・アウェア・編集の進歩的プロセスであるStablEアニメーションジェネレーション(LASER)をカプセル化した,チューニング不要なアテンション制御フレームワークを提案する。
アニメーションの整合性を維持するために,モデルの空間的特徴と自己認識機構を操作する。
空間的特徴と自己注意の厳密な制御により,画像の構造的一貫性が確保される。
論文 参考訳(メタデータ) (2024-04-21T07:13:56Z) - Automatic Controllable Colorization via Imagination [55.489416987587305]
本稿では,反復的な編集と修正が可能な自動色付けフレームワークを提案する。
グレースケール画像内のコンテンツを理解することにより、トレーニング済みの画像生成モデルを用いて、同じコンテンツを含む複数の画像を生成する。
これらの画像は、人間の専門家の過程を模倣して、色付けの参考となる。
論文 参考訳(メタデータ) (2024-04-08T16:46:07Z) - Learning Inclusion Matching for Animation Paint Bucket Colorization [76.4507878427755]
ネットワークにセグメント間の包摂関係を理解するための,学習に基づく新たな包摂的マッチングパイプラインを導入する。
提案手法では,粗いカラーワープモジュールと包括的マッチングモジュールを統合した2段階のパイプラインを特徴とする。
ネットワークのトレーニングを容易にするため,PaintBucket-Characterと呼ばれるユニークなデータセットも開発した。
論文 参考訳(メタデータ) (2024-03-27T08:32:48Z) - Make-It-Vivid: Dressing Your Animatable Biped Cartoon Characters from Text [38.591390310534024]
入力命令に基づく漫画文字の自動テクスチャ設計に着目する。
これはドメイン固有の要件と高品質なデータの欠如にとって難しい。
UVテキストから高品質なテクスチャ生成を可能にする最初の試みとして,Make-ItViviを提案する。
論文 参考訳(メタデータ) (2024-03-25T16:08:04Z) - Instance-guided Cartoon Editing with a Large-scale Dataset [12.955181769243232]
本稿では,画像中の文字に対する高精度なセグメンテーションマスクを生成するインスタンス認識画像セグメンテーションモデルを提案する。
提案手法は,3D Ken Burns のパララックス効果,テキスト誘導の漫画スタイルの編集,イラストやマンガからの人形アニメーションなど,セグメンテーションに依存した漫画編集の応用を可能にする。
論文 参考訳(メタデータ) (2023-12-04T15:00:15Z) - TADA! Text to Animatable Digital Avatars [57.52707683788961]
TADAはテキスト記述を取り込み、高品質な幾何学とライフスタイルのテクスチャを備えた表現力のある3Dアバターを生産する。
我々は3次元変位とテクスチャマップを備えたSMPL-Xから最適化可能な高分解能ボディモデルを導出した。
我々は、生成した文字の正規表現とRGB画像をレンダリングし、SDSトレーニングプロセスにおけるそれらの潜伏埋め込みを利用する。
論文 参考訳(メタデータ) (2023-08-21T17:59:10Z) - Learning to Incorporate Texture Saliency Adaptive Attention to Image
Cartoonization [20.578335938736384]
マンガ・テクスチュア・サリエンシ・サンプラー (CTSS) モジュールを提案し, トレーニングデータからマンガ・テクスチュア・サリエントパッチを動的にサンプリングする。
大規模な実験により,画像のマンガ化を促進・強化する上で,テクスチャ・サリエンシー適応型学習が重要であることを示す。
論文 参考訳(メタデータ) (2022-08-02T16:45:55Z) - White-Box Cartoonization Using An Extended GAN Framework [0.0]
本稿では,既存のGANフレームワークを拡張するために,逆数プロセスによる生成モデルを推定するための新しいフレームワークを提案する。
実世界の写真やビデオから高品質な漫画画像や映像を生成できる、ホワイトボックス制御可能な画像漫画化を開発した。
論文 参考訳(メタデータ) (2021-07-09T17:09:19Z) - Stylized Neural Painting [0.0]
本稿では,鮮明でリアルな絵画を制御可能なスタイルで生成する画像から絵画への翻訳手法を提案する。
実験により,本手法で作成した絵画は,グローバルな外観と局所的なテクスチャの両方において高い忠実度を有することが示された。
論文 参考訳(メタデータ) (2020-11-16T17:24:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。