論文の概要: Beyond Surrogate Modeling: Learning the Local Volatility Via Shape
Constraints
- arxiv url: http://arxiv.org/abs/2212.09957v1
- Date: Tue, 20 Dec 2022 02:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 17:19:15.088597
- Title: Beyond Surrogate Modeling: Learning the Local Volatility Via Shape
Constraints
- Title(参考訳): 代理モデリングを超えて: 局所的変動性 - 形状制約を学ぶ
- Authors: Marc Chataigner, Areski Cousin, St\'ephane Cr\'epey, Matthew Dixon and
Djibril Gueye
- Abstract要約: 欧州のバニラオプション価格の調整を行なわない2つの機械学習アプローチの能力について検討し、それに対応する局所的なボラティリティサーフェスを共同で生成する。
SSVI業界標準と比較して,これらの手法の性能を実証する。
GP法は仲裁のないことが証明されているが、仲裁法はSSVI法とNN法でのみ罰せられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the abilities of two machine learning approaches for no-arbitrage
interpolation of European vanilla option prices, which jointly yield the
corresponding local volatility surface: a finite dimensional Gaussian process
(GP) regression approach under no-arbitrage constraints based on prices, and a
neural net (NN) approach with penalization of arbitrages based on implied
volatilities. We demonstrate the performance of these approaches relative to
the SSVI industry standard. The GP approach is proven arbitrage-free, whereas
arbitrages are only penalized under the SSVI and NN approaches. The GP approach
obtains the best out-of-sample calibration error and provides uncertainty
quantification.The NN approach yields a smoother local volatility and a better
backtesting performance, as its training criterion incorporates a local
volatility regularization term.
- Abstract(参考訳): ヨーロッパバニラオプション価格の非アルビタージュ補間のための2つの機械学習手法の能力について検討し、対応する局所的ボラティリティ面を共用する: 有限次元ガウス過程(gp) 価格に基づく非アルビタージュ制約下での回帰アプローチと、暗黙のボラティリティに基づく調停のペナル化を伴うニューラルネット(nn)アプローチである。
SSVI業界標準に対するこれらのアプローチの性能を実証する。
GPアプローチは仲裁のないことが証明されているが、仲裁はSSVIおよびNNアプローチでのみ罰せられる。
GP法は, 最適外乱校正誤差を求め, 不確実な定量化を提供する。NN法では, 局所変動度がよりスムーズに向上し, バックテスト性能が向上する。
関連論文リスト
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Distributionally Robust Optimization with Bias and Variance Reduction [9.341215359733601]
勾配に基づくアルゴリズムであるProspectは、スムーズな正規化損失に対する線形収束を享受していることを示す。
また、勾配法のようなベースラインよりも2~3$times$早く収束できることも示している。
論文 参考訳(メタデータ) (2023-10-21T00:03:54Z) - Mean-Semivariance Policy Optimization via Risk-Averse Reinforcement
Learning [12.022303947412917]
本稿では,強化学習における平均半変量基準の最適化を目的とした。
我々は,政策依存型報酬関数を用いて一連のRL問題を反復的に解くことで,MSV問題を解くことができることを明らかにした。
政策勾配理論と信頼領域法に基づく2つのオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-15T08:32:53Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics [0.0]
シミュレーションスポットとオプション価格の経路に対するリスクニュートラル測度学習のための数値的効率的アプローチ
市場ダイナミクスは、リスク中立的措置に従う場合に限り、取引コストがなければ「統計的な仲裁」ができないことを示している。
論文 参考訳(メタデータ) (2021-03-22T15:38:25Z) - Semi-Supervised Learning with Variational Bayesian Inference and Maximum
Uncertainty Regularization [62.21716612888669]
半教師付き学習(SSL)を改善するための2つの一般的な方法を提案する。
第一に、重量摂動(WP)を既存のCR(Consistency regularization)ベースの手法に統合する。
第2の手法は「最大不確実性正規化(MUR)」と呼ばれる新しい整合性損失を提案する。
論文 参考訳(メタデータ) (2020-12-03T09:49:35Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z) - A generative adversarial network approach to calibration of local
stochastic volatility models [2.1485350418225244]
局所ボラティリティ(LSV)モデルのキャリブレーションのための完全データ駆動手法を提案する。
我々は、フィードフォワードニューラルネットワークのファミリーによってレバレッジ関数をパラメータ化し、利用可能な市場オプション価格から直接パラメータを学習する。
これは、ニューラルSDEと(因果)生成的敵ネットワークの文脈で見る必要がある。
論文 参考訳(メタデータ) (2020-05-05T21:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。