論文の概要: Distributionally Robust Optimization with Bias and Variance Reduction
- arxiv url: http://arxiv.org/abs/2310.13863v1
- Date: Sat, 21 Oct 2023 00:03:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 04:48:30.039571
- Title: Distributionally Robust Optimization with Bias and Variance Reduction
- Title(参考訳): バイアスと分散化によるロバスト分布最適化
- Authors: Ronak Mehta, Vincent Roulet, Krishna Pillutla, Zaid Harchaoui
- Abstract要約: 勾配に基づくアルゴリズムであるProspectは、スムーズな正規化損失に対する線形収束を享受していることを示す。
また、勾配法のようなベースラインよりも2~3$times$早く収束できることも示している。
- 参考スコア(独自算出の注目度): 9.341215359733601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the distributionally robust optimization (DRO) problem with
spectral risk-based uncertainty set and $f$-divergence penalty. This
formulation includes common risk-sensitive learning objectives such as
regularized condition value-at-risk (CVaR) and average top-$k$ loss. We present
Prospect, a stochastic gradient-based algorithm that only requires tuning a
single learning rate hyperparameter, and prove that it enjoys linear
convergence for smooth regularized losses. This contrasts with previous
algorithms that either require tuning multiple hyperparameters or potentially
fail to converge due to biased gradient estimates or inadequate regularization.
Empirically, we show that Prospect can converge 2-3$\times$ faster than
baselines such as stochastic gradient and stochastic saddle-point methods on
distribution shift and fairness benchmarks spanning tabular, vision, and
language domains.
- Abstract(参考訳): スペクトルリスクに基づく不確実性セットと$f$-divergenceペナルティを備えた分散ロバスト最適化(DRO)問題を考察する。
この定式化には、正規化条件値(cvar)や平均top-$k$損失など、一般的なリスクに敏感な学習目標が含まれている。
我々は,単一学習率ハイパーパラメータのチューニングのみを必要とする確率的勾配に基づくアルゴリズムであるprospecterを提案し,滑らかな正規化損失に対して線形収束を享受することを示す。
これは、複数のハイパーパラメータをチューニングするか、偏りのある勾配推定や不適切な正規化のために収束しない可能性がある以前のアルゴリズムとは対照的である。
実験により,確率勾配や確率的サドル点法などのベースラインよりも2~3$\times$早く分布シフトや,表領域,視覚領域,言語領域にまたがる公平性ベンチマークを収束させることができることを示す。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions [18.47705532817026]
AdaGradは特定の条件下では$d$でSGDより優れていることを示す。
これを動機として、目的物の滑らかさ構造と勾配のばらつきを仮定する。
論文 参考訳(メタデータ) (2024-06-07T02:55:57Z) - PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates [17.777466668123886]
PROMISE ($textbfPr$econditioned $textbfO$ptimization $textbfM$ethods by $textbfI$ncorporating $textbfS$calable Curvature $textbfE$stimates)はスケッチベースの事前条件勾配アルゴリズムである。
PROMISEには、SVRG、SAGA、およびKatyushaのプレコンディション版が含まれている。
論文 参考訳(メタデータ) (2023-09-05T07:49:10Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
我々は、勾配推定が末尾を持つ可能性のある一階アルゴリズムを用いたヒルベルト非最適化を考える。
本研究では, 勾配, 運動量, 正規化勾配勾配の収束を高確率臨界点に収束させることと, 円滑な損失に対する最もよく知られた繰り返しを示す。
論文 参考訳(メタデータ) (2021-06-28T00:17:01Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - Variance Regularization for Accelerating Stochastic Optimization [14.545770519120898]
ミニバッチ勾配に隠れた統計情報を利用してランダムな誤りの蓄積を低減する普遍原理を提案する。
これは、ミニバッチのばらつきに応じて学習率を正規化することで達成される。
論文 参考訳(メタデータ) (2020-08-13T15:34:01Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
関数の測定値が推定誤差を持つ設定を捉えるために,バイアス付き勾配オラクルを導入する。
提案するオラクルは,例えば,独立分散シミュレーションと同一分散シミュレーションのバッチによるリスク計測推定の実践的な状況にある。
論文 参考訳(メタデータ) (2020-02-26T12:53:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。