論文の概要: A generative adversarial network approach to calibration of local
stochastic volatility models
- arxiv url: http://arxiv.org/abs/2005.02505v3
- Date: Tue, 29 Sep 2020 09:53:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 14:34:14.797042
- Title: A generative adversarial network approach to calibration of local
stochastic volatility models
- Title(参考訳): 局所確率的ボラティリティモデルのキャリブレーションに対する生成的逆ネットワークアプローチ
- Authors: Christa Cuchiero and Wahid Khosrawi and Josef Teichmann
- Abstract要約: 局所ボラティリティ(LSV)モデルのキャリブレーションのための完全データ駆動手法を提案する。
我々は、フィードフォワードニューラルネットワークのファミリーによってレバレッジ関数をパラメータ化し、利用可能な市場オプション価格から直接パラメータを学習する。
これは、ニューラルSDEと(因果)生成的敵ネットワークの文脈で見る必要がある。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a fully data-driven approach to calibrate local stochastic
volatility (LSV) models, circumventing in particular the ad hoc interpolation
of the volatility surface. To achieve this, we parametrize the leverage
function by a family of feed-forward neural networks and learn their parameters
directly from the available market option prices. This should be seen in the
context of neural SDEs and (causal) generative adversarial networks: we
generate volatility surfaces by specific neural SDEs, whose quality is assessed
by quantifying, possibly in an adversarial manner, distances to market prices.
The minimization of the calibration functional relies strongly on a variance
reduction technique based on hedging and deep hedging, which is interesting in
its own right: it allows the calculation of model prices and model implied
volatilities in an accurate way using only small sets of sample paths. For
numerical illustration we implement a SABR-type LSV model and conduct a
thorough statistical performance analysis on many samples of implied volatility
smiles, showing the accuracy and stability of the method.
- Abstract(参考訳): 本研究では,局所確率的ボラティリティ (LSV) モデルのキャリブレーションのための完全データ駆動型アプローチを提案し,特にボラティリティ表面のアドホック補間を回避した。
これを実現するために、フィードフォワードニューラルネットワークのファミリーによるレバレッジ関数をパラメータ化し、利用可能な市場オプション価格から直接パラメータを学習する。
このことは、ニューラルSDEと(因果)生成的敵ネットワークの文脈で見る必要がある:我々は特定のニューラルSDEによってボラティリティー面を生成し、その品質は、おそらく敵対的な方法で、市場価格までの距離を定量化することによって評価される。
キャリブレーション関数の最小化は, ヘッジとディープヘッジに基づく分散低減技術に強く依存しており, モデル価格とモデルインプリッドボラティリティの計算を, 少数のサンプルパスのみを用いて正確に行うことができる。
数値シミュレーションのためにsabr型lsvモデルを実装し,提案手法の精度と安定性を示す多数のボラティリティスマイルのサンプルについて,詳細な統計性能解析を行う。
関連論文リスト
- The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Delta-AI: Local objectives for amortized inference in sparse graphical models [64.5938437823851]
スパース確率的グラフィカルモデル(PGM)における補正推論のための新しいアルゴリズムを提案する。
提案手法は, PGMにおける変数のサンプリングをエージェントが行う一連の行動とみなす場合, エージェントのポリシー学習目的において, PGMの疎結合が局所的な信用割当を可能にするという観察に基づいている。
合成PGMからサンプリングし、スパース因子構造を持つ潜在変数モデルを訓練するための$Delta$-AIの有効性について説明する。
論文 参考訳(メタデータ) (2023-10-03T20:37:03Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
マルコフ連鎖モンテカルロのようなサンプリングに基づくアプローチの使用は、それぞれの可能性評価が計算的に高価であるときに難解になる可能性がある。
変分推論と正規化フローを組み合わせた新しいアプローチは、潜在変数空間の次元と線形にしか成長しない計算コストによって特徴づけられる。
本稿では,ニューラルネットワークサロゲートモデルの正規化フローパラメータと重みを代わりに更新する最適化戦略である,適応サロゲートを用いた正規化フロー(NoFAS)を提案する。
論文 参考訳(メタデータ) (2021-08-28T14:31:45Z) - Arbitrage-free neural-SDE market models [6.145654286950278]
我々は、基礎となる金融制約を尊重する欧州オプションブックの非パラメトリックモデルを開発する。
株価とオプション価格の離散時系列データからモデルを学習する推論問題について検討する。
我々は,SDEシステムのドリフトと拡散のための関数近似器としてニューラルネットワークを用いる。
論文 参考訳(メタデータ) (2021-05-24T00:53:10Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.28438857884398]
ランダムな設計と、潜在的にヘテロセダスティックで重み付きエラーを伴う線形平均回帰モデルを考える。
我々は,問題のパラメータに依存するチューニングパラメータを備えた,厳密な凸・滑らかなHuber損失関数の変種を用いる。
得られた推定器に対して、$ell_infty$ノルムにおける符号一貫性と最適収束率を示す。
論文 参考訳(メタデータ) (2020-11-03T09:46:31Z) - Recurrent Conditional Heteroskedasticity [0.0]
本稿では,Recurrent Conditional Heteroskedastic(RECH)モデルと呼ばれる新たな金融変動モデルを提案する。
特に、リカレントニューラルネットワークが支配する補助的決定過程を、従来の条件付きヘテロスケダスティックモデルの条件分散に組み込む。
論文 参考訳(メタデータ) (2020-10-25T08:09:29Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Robust pricing and hedging via neural SDEs [0.0]
我々は,ニューラルSDEの効率的な利用に必要な新しいアルゴリズムを開発し,分析する。
我々は、関連する市場データを取り入れつつ、デリバティブの価格とそれに対応するヘッジ戦略の堅牢な境界を見出した。
ニューラルSDEはリスクニュートラルと現実世界の両方で一貫したキャリブレーションを可能にする。
論文 参考訳(メタデータ) (2020-07-08T14:33:17Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。