論文の概要: Insights into undergraduate pathways using course load analytics
- arxiv url: http://arxiv.org/abs/2212.09974v1
- Date: Tue, 20 Dec 2022 03:28:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 17:18:05.300424
- Title: Insights into undergraduate pathways using course load analytics
- Title(参考訳): 授業負荷分析を用いた学部進路の考察
- Authors: Conrad Borchers and Zachary A. Pardos
- Abstract要約: 学生の負荷評価に関する最初の機械学習による予測を作成・評価する。
学期負荷を信用時間で測定されるが、CLAで測定されるほど低い学生は、学習プログラムを離れる傾向にある。
- 参考スコア(独自算出の注目度): 5.2432156904895155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Course load analytics (CLA) inferred from LMS and enrollment features can
offer a more accurate representation of course workload to students than credit
hours and potentially aid in their course selection decisions. In this study,
we produce and evaluate the first machine-learned predictions of student course
load ratings and generalize our model to the full 10,000 course catalog of a
large public university. We then retrospectively analyze longitudinal
differences in the semester load of student course selections throughout their
degree. CLA by semester shows that a student's first semester at the university
is among their highest load semesters, as opposed to a credit hour-based
analysis, which would indicate it is among their lowest. Investigating what
role predicted course load may play in program retention, we find that students
who maintain a semester load that is low as measured by credit hours but high
as measured by CLA are more likely to leave their program of study. This
discrepancy in course load is particularly pertinent in STEM and associated
with high prerequisite courses. Our findings have implications for academic
advising, institutional handling of the freshman experience, and student-facing
analytics to help students better plan, anticipate, and prepare for their
selected courses.
- Abstract(参考訳): LMSと入学機能から推定されるコース負荷分析(CLA)は、クレジット時間よりも生徒にコース負荷の正確な表現を提供し、コース選択の決定を支援する可能性がある。
本研究では, 学生コースの負荷評価を機械学習した最初の予測を作成し, 評価し, 大規模公立大学の1万コースカタログに一般化した。
次に,授業選択における学期負荷の経時的差について,その度合いを振り返って分析した。
cla by semesterは、学生の最初の学期が最高負荷の学期であり、信用時間に基づく分析とは対照的に、最低の学期であることを示している。
プログラムの維持にどのような役割を期待できるかを調べたところ、学期負荷を受講時間で測定するが、CLAで測定するほど高い学年負荷を維持している学生は、学習プログラムを離れる可能性が高くなることがわかった。
コース負荷におけるこの相違は、特にSTEMにおいて重要であり、高い前提条件のコースと関連している。
本研究は,学生が選択したコースを計画し,予測し,準備するのに役立つ,学術的助言,新入生体験の制度的扱い,学生向け分析に影響を及ぼす。
関連論文リスト
- Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理の主要な手法となっている。
本研究は,低アグリゲーション,異質なアノテーションを組み合わせたアグリゲーションの結果が,プロンプトに有害なノイズを生じさせるアノテーションのアーティファクトに繋がるかどうかを考察する。
この結果から,アグリゲーションは主観的タスクのモデル化において不明瞭な要因であり,代わりに個人をモデリングすることを重視することが示唆された。
論文 参考訳(メタデータ) (2024-10-17T17:16:00Z) - Students Success Modeling: Most Important Factors [0.47829670123819784]
モデルは、卒業する確率の高い生徒、転校する確率の高い生徒、退学して高等教育を終了させる確率の高い生徒を識別する。
実験の結果,初等期において,大学生とリスクの高い学生の区別が合理的に達成できることが示唆された。
このモデルは、学校に3年間滞在する学生の運命を著しく予測している。
論文 参考訳(メタデータ) (2023-09-06T19:23:10Z) - Impacts of Students Academic Performance Trajectories on Final Academic
Success [0.0]
本研究では,HMM(Hidden Markov Model)を用いて,学生の学業成績の標準的,直感的な分類を行う。
中央フロリダ大学の学生書き起こしデータに基づいて,本提案したHMMは,各学期毎の学生の授業成績のシーケンスを用いて訓練されている。
論文 参考訳(メタデータ) (2022-01-21T15:32:35Z) - Identifying Hubs in Undergraduate Course Networks Based on Scaled
Co-Enrollments: Extended Version [2.0796330979420836]
本研究では、学生の学生登録データを用いて、学生共同登録に基づいて接続するコースのネットワークを形成する。
ネットワークは分析され、しばしば他の多くのコースで取られる「ハブ」コースを特定する。
論文 参考訳(メタデータ) (2021-04-27T16:26:29Z) - Interleaving Computational and Inferential Thinking: Data Science for
Undergraduates at Berkeley [81.01051375191828]
カリフォルニア大学バークレー校の大学院データサイエンスカリキュラムは、5つの新しいコースに固定されている。
これらのコースは計算思考、推論思考、現実世界の問題に取り組むことを強調する。
これらのコースは、キャンパスで最も人気のあるコースの一つとなり、データサイエンスの新しい学部生とマイナープログラムへの関心が高まっている。
論文 参考訳(メタデータ) (2021-02-13T22:51:24Z) - What's the worth of having a single CS teacher program aimed at teachers
with heterogeneous profiles? [68.8204255655161]
アルゼンチンのK-12教師を対象とした400時間の教員養成プログラムの結果について検討した。
本研究の目的は,教師にCSの内容や具体的教育を指導する上で,教師一人ひとりの教育プログラムが有効であるかどうかを,多種多様なプロファイルを持つ教師に理解することである。
論文 参考訳(メタデータ) (2020-11-09T15:03:31Z) - Using a Binary Classification Model to Predict the Likelihood of
Enrolment to the Undergraduate Program of a Philippine University [0.0]
本研究はフィリピンの大学における入所資格に影響する新入生応募者の諸特性について分析した。
受験生が施設への入学を追求する確率を評価するために,ロジスティック回帰を用いた予測モデルを開発した。
論文 参考訳(メタデータ) (2020-10-26T06:58:03Z) - A Survey on Curriculum Learning [48.36129047271622]
Curriculum Learning(CL)は、より簡単なデータからより難しいデータまで、マシンラーニングモデルをトレーニングするトレーニング戦略である。
CL戦略は、使い易いプラグインとして、様々なモデルの一般化能力と収束率を改善する能力を示した。
論文 参考訳(メタデータ) (2020-10-25T17:15:04Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
観察データによる因果推論の鍵は、それぞれの治療タイプに関連する予測的特徴のバランスを達成することである。
近年の文献では、この目標を達成するために表現学習を探求している。
因果効果を柔軟かつスケーラブルかつ正確に推定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-23T19:06:03Z) - Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from
the First Week's Activities [56.1344233010643]
いくつかの特徴は、学習者の誘惑や興味の欠如に寄与すると考えられており、そのことが解脱や総減退につながる可能性がある。
この研究は、いくつかの機械学習アプローチを比較して、最初の1週間から早期のドロップアウトを予測することを目的としている。
論文 参考訳(メタデータ) (2020-08-12T10:44:49Z) - Context-aware Non-linear and Neural Attentive Knowledge-based Models for
Grade Prediction [12.592903558338444]
コース選択の過程において,学生と指導員を支援できるため,学生がまだ受け取っていない将来のコースのグレード予測が重要である。
将来のコースにおける生徒の成績を正確に予測するための成功したアプローチの1つは、累積的知識ベース回帰モデル(CKRM)である。
CKRMは、学生の成績を、自分の知識状態と対象コースとの類似性として予測する浅い線形モデルを学ぶ。
本研究では,学習者の事前学習情報から,学習者の知識状態をより正確に推定できる文脈認識型非線形・ニューラル注意モデルを提案する。
論文 参考訳(メタデータ) (2020-03-09T20:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。