論文の概要: Image Segmentation-based Unsupervised Multiple Objects Discovery
- arxiv url: http://arxiv.org/abs/2212.10124v1
- Date: Tue, 20 Dec 2022 09:48:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 16:24:57.610403
- Title: Image Segmentation-based Unsupervised Multiple Objects Discovery
- Title(参考訳): 画像セグメンテーションに基づく教師なし複数物体発見
- Authors: Sandra Kara, Hejer Ammar, Florian Chabot, Quoc-Cuong Pham
- Abstract要約: 教師なしオブジェクト発見は、イメージ内のオブジェクトをローカライズすることを目的としている。
我々は,複数のオブジェクトの発見に対して,完全に教師なしのボトムアップアプローチを提案する。
我々は、教師なしクラス非依存オブジェクト検出と教師なしイメージセグメンテーションの両方に対して、最先端の結果を提供する。
- 参考スコア(独自算出の注目度): 1.7674345486888503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised object discovery aims to localize objects in images, while
removing the dependence on annotations required by most deep learning-based
methods. To address this problem, we propose a fully unsupervised, bottom-up
approach, for multiple objects discovery. The proposed approach is a two-stage
framework. First, instances of object parts are segmented by using the
intra-image similarity between self-supervised local features. The second step
merges and filters the object parts to form complete object instances. The
latter is performed by two CNN models that capture semantic information on
objects from the entire dataset. We demonstrate that the pseudo-labels
generated by our method provide a better precision-recall trade-off than
existing single and multiple objects discovery methods. In particular, we
provide state-of-the-art results for both unsupervised class-agnostic object
detection and unsupervised image segmentation.
- Abstract(参考訳): 教師なしオブジェクト発見(unsupervised object discovery)は、画像内のオブジェクトをローカライズすることを目的としている。
この問題に対処するため,複数物体発見のための完全教師なしボトムアップ手法を提案する。
提案されたアプローチは2段階のフレームワークである。
まず、自己監督的局所特徴間の画像内類似性を用いて、対象部品のインスタンスをセグメント化する。
2番目のステップは、オブジェクト部品をマージしてフィルタし、完全なオブジェクトインスタンスを形成する。
後者は、データセット全体からオブジェクトの意味情報をキャプチャする2つのcnnモデルによって実行される。
提案手法によって生成された擬似ラベルは,既存の単一および複数オブジェクト発見手法よりも精度の高いトレードオフを提供する。
特に,教師なしのクラス非依存オブジェクト検出と教師なし画像セグメンテーションの両方に対して最先端の結果を提供する。
関連論文リスト
- Improving Object Detection via Local-global Contrastive Learning [27.660633883387753]
本稿では,クロスドメインオブジェクト検出を対象とする画像から画像への変換手法を提案する。
ローカル・グローバル情報と対比することでオブジェクトを表現することを学ぶ。
これにより、ドメインシフトの下で、パフォーマンス検出(Performant detection)の取得という、未調査の課題の調査が可能になる。
論文 参考訳(メタデータ) (2024-10-07T14:18:32Z) - 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation [72.54357831350762]
本稿では,ビデオオブジェクトのセグメンテーションモデルを提案する。
我々は大規模ビデオオブジェクトセグメンテーションデータセットを用いてモデルを訓練した。
我々のモデルは、複雑なビデオオブジェクトチャレンジのテストセットで1位(textbf84.45%)を達成した。
論文 参考訳(メタデータ) (2024-06-07T03:13:46Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Linear Object Detection in Document Images using Multiple Object
Tracking [58.720142291102135]
線形オブジェクトは文書構造に関する実質的な情報を伝達する。
多くのアプローチはベクトル表現を復元できるが、1994年に導入された1つのクローズドソース技術のみである。
複数オブジェクト追跡を用いた文書画像中の線形オブジェクトの正確なインスタンスセグメンテーションのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:22:03Z) - Unsupervised Object Localization: Observing the Background to Discover
Objects [4.870509580034194]
本研究では,異なるアプローチを採り,その代わりに背景を探すことを提案する。
このようにして、健全なオブジェクトは、オブジェクトが何であるべきかを強く仮定することなく、副産物として現れます。
自己教師型パッチベース表現から抽出した粗い背景マスクを備えた1ドルconv1times1$のシンプルなモデルであるFOUNDを提案する。
論文 参考訳(メタデータ) (2022-12-15T13:43:11Z) - OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point
Clouds [4.709764624933227]
OGCと呼ばれる最初の教師なしの手法を提案し、同時に複数の3Dオブジェクトを1つの前方通過で識別する。
提案手法を5つのデータセット上で広範囲に評価し,オブジェクト部分のインスタンスセグメンテーションにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-10T07:01:08Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
シーン中心画像における物体検出を改善するために,物体中心画像を活用する。
私たちは、シンプルで驚くほど効果的なフレームワークを提示します。
我々の手法は、レアオブジェクトのオブジェクト検出(およびインスタンスセグメンテーション)の精度を相対的に50%(および33%)向上させることができる。
論文 参考訳(メタデータ) (2021-02-17T17:27:21Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
我々は,コヒーレントなシーン全体を移動しているように見えるシーンの画像の一部を検出し,分割するための教師なしの手法について述べる。
提案手法はまず,セグメント間の相互情報を最小化することにより,運動場を分割する。
セグメントを使用してオブジェクトモデルを学習し、静的なイメージの検出に使用することができる。
論文 参考訳(メタデータ) (2020-08-16T22:05:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。