論文の概要: Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2212.10306v2
- Date: Sat, 21 Jun 2025 10:39:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.089267
- Title: Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
- Title(参考訳): Few-shot Time Series Forecastingのためのガウス過程遅延可変モデリング
- Authors: Yunyao Cheng, Chenjuan Guo, Kaixuan Chen, Kai Zhao, Bin Yang, Jiandong Xie, Christian S. Jensen, Feiteng Huang, Kai Zheng,
- Abstract要約: 時系列予測は資源配分、工業生産、都市管理の最適化に不可欠である。
既存のモデルは、長期の依存関係をキャプチャし、数ショットのシナリオで様々なメタ知識を明示的にモデル化するのに苦労している。
本稿では,メタラーニングに基づくガウス的プロセス潜在変数モデルであるMetaGPを提案する。
- 参考スコア(独自算出の注目度): 25.612524060553703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate time series forecasting is crucial for optimizing resource allocation, industrial production, and urban management, particularly with the growth of cyber-physical and IoT systems. However, limited training sample availability in fields like physics and biology poses significant challenges. Existing models struggle to capture long-term dependencies and to model diverse meta-knowledge explicitly in few-shot scenarios. To address these issues, we propose MetaGP, a meta-learning-based Gaussian process latent variable model that uses a Gaussian process kernel function to capture long-term dependencies and to maintain strong correlations in time series. We also introduce Kernel Association Search (KAS) as a novel meta-learning component to explicitly model meta-knowledge, thereby enhancing both interpretability and prediction accuracy. We study MetaGP on simulated and real-world few-shot datasets, showing that it is capable of state-of-the-art prediction accuracy. We also find that MetaGP can capture long-term dependencies and can model meta-knowledge, thereby providing valuable insights into complex time series patterns.
- Abstract(参考訳): 正確な時系列予測は、資源配分、工業生産、都市管理の最適化、特にサイバー物理・IoTシステムの成長に不可欠である。
しかし、物理学や生物学のような分野における限られたトレーニングサンプルの可用性は、大きな課題となる。
既存のモデルは、長期の依存関係をキャプチャし、数ショットのシナリオで様々なメタ知識を明示的にモデル化するのに苦労している。
これらの問題に対処するため,メタ学習に基づくガウスプロセス潜時変数モデルであるMetaGPを提案する。
また,メタ知識を明示的にモデル化するための新しいメタ学習コンポーネントとしてカーネル・アソシエーション・サーチ(KAS)を導入し,解釈可能性と予測精度の両立を図る。
シミュレーションおよび実世界の複数ショットデータセットのMetaGPについて検討し、最先端の予測精度を示す。
また、MetaGPは長期の依存関係をキャプチャし、メタ知識をモデル化し、複雑な時系列パターンに関する貴重な洞察を提供することができる。
関連論文リスト
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting [19.573651104129443]
長期の時系列予測は、様々な現実のシナリオにおいて重要な役割を果たす。
近年の時系列予測の深層学習手法は,分解法やサンプリング法により時系列の複雑なパターンを捉える傾向にある。
本稿では,MPPN(Multi- resolution Periodic Pattern Network)という,長期連続予測のための新しいディープラーニングネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-12T07:00:37Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
多変量時系列の異常検出は、データマイニング研究と産業応用の両方において非常に重要である。
1つの大きな制限は、異なる時系列間の関係を明示的に捉えないことである。
この問題に対処するために,多変量時系列異常検出のための新しい自己教師型フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-04T07:46:19Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
本研究は時系列予測のためのニューラルネットワークアーキテクチャを提案する。
Recurrent Graph Evolution Neural Network (ReGENN) と名付けた。
多数のアンサンブル法と古典統計法との比較を行った。
論文 参考訳(メタデータ) (2020-08-28T20:10:07Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。